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BANACH LATTICE STRUCTURES ON SEPARABLE L, SPACES
E. LACEY AND P. WOJTASZCZYK

ABSTRACT. A complete characterization of those lattice structures on
separable L, spaces which are Banach lattice structures under the L, norm
is given.

The Banach spaces L, () of all (equivalence classes of) u-measurable real
valued functions f such that | f] is p-integrable are among the most important
and the most elegant examples of Banach lattices (here we are taking
1 < p< oo and the norm to be the usual L, norm given by |/
={f7? dp)'/? and the lattice structure to be defined in the usual pointwise
manner). In the separable case it is well known that L,(p) is linearly isometric
and lattice isomorphic to exactly one of five concrete L, spaces, namely, /,(n),
Ly L, (= L,[0, 1]), [,(n) ® L,, and [, ® L, where the direct sums are taken in
the p sense (see, for example, [3]). It has become of interest to explore the
question of classifying the lattice structures, if any, which can be put on a
Banach space to make it a Banach lattice (for a Banach lattice we insist that
for any element x in the space, ||x|| =||x||| where |x| is the modulus of x in
the lattice structure). This question is naturally well posed in both the
isomorphic theory and the isometric theory of Banach spaces. The isomorphic
theory is concerned with when a given Banach space is linearly isomorphic to
a Banach lattice and the isometric theory simply replaces ‘linearly
isomorphic’ with ‘linearly isometric’.

For example, it is well known that for p > 1, a separable space L,(p)
admits an unconditional Schauder basis {f,}, that is, there is a constant
K > 1 such that for any pair of finite sequences a,, ..., a, and B, ..., B

of scalars with |a,| < | ,B,.| for i=1,...,k, we have that
[Zi- 10| < K|, BS|. The smallest such constant K is called the uncondi-
tional basis constant for { f,} and it can be ea ily seen that if we define a new
norm on L ,(u) by 112, a,f,I' =sup{IZ,-,B,a,f,: 8, < 1}, then this norm is
equivalent to the original norm and the f,’s have unconditional basis ‘constant
equal to one with respect to this new norm. Moreover, it follows readily that
under the new norm that L,(p) can be given the structure of a purely atomic
Banach lattice simply by defining £;°_,a,f, > 0 if and only if a, > O for all n
(by purely atomic we mean that every positive element dominates some atom,
e.g., 2. 1a,f, > afy where o > 0). Thus L (p) in this new norm and new
lattice structure is not lattice isomorphic to L,(p) in the original norm and
lattice structure (however, the two are linearly isomorphic).
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Recently the second named author and Abramovic [1] have studied Banach
lattices which are linearly isomorphic to L,( ). For example, they proved that
[, is not linearly isomorphic to an atomless Banach lattice and that L, and L,
have the property that if they are linearly isomorphic to an atomless Banach
lattice, then there is also a linear isomorphism which preserves the lattice
structure, i.e., the lattice structures on L, and L, are unique up to order
isomorphism.

In this paper we consider only the Banach lattices which are linearly
isometric to a separable L,(p). That is, we assume that L,( p) has some lattice
structure such that it is a Banach lattice under the L,-norm. We are able to
give a complete characterization of such lattice structures and show that
L,(p) is order isomorphic (but not order isometric necessarily) in its natural
order to each of these structures. One consequence of this is the known result
that a monotone basis for L,[0, 1] (1 < p < o) cannot have unconditional
basis constant equal to one (see [2] for a characterization of monotone bases
in L [0, 1]).

To see how to obtain some Banach lattice structures on L,(u) let us
consider the two-dimensional space /,(2) (1 < p < o, p #2). Let ¢, ¢,
denote the standard unit vector basis in /,(2). Then f, = (e, + €,)/ 2'/7 and
fHr=(e — e2)/21/"J together form an unconditional basis for /,(2) with basis
constant 1. Moreover, |l&, fy + &, /5|, =||f, + f3|, where ge{l, —1} fori = 1,
2. Thus it follows readily that the cone spanned by f,, f, (i.e., C = {af, + bf,:
a, b > 0}) is a lattice cone and the p norm is a Banach lattice norm for this
lattice. We shall denote this space by E,(2). Thus we have that /, is linearly
isometric to (BZ5_,F,), where for each n, F, = [ (2) or F, = E,(2). Clearly
if at least one F, = E,(2), then (BX3_,F,), is not an L,-space as a Banach
lattice, since, for example, the norm is not p-additive (see [3]). Thus it is a
different Banach lattice structure on /,. More generally, if » is any measure
and X is a Banach lattice, then Lp(v, X) is the Banach lattice of all
measurable X-valued functions f such that [||f(7)|P dv(r) =|f}f is finite.
Moreover, if X is an Lp space, then Lp(v, X) is also an Lp space since the
norm in L,(», X) is p-additive (see [3]). Since E,(2) is linearly isometric to
[,(2), for any measure p, L,(p, E,(2)) is linearly isometric to L,(p, [,(2))
which, in turn, is linearly isometric and order isomorphic to L,(p) &, L,(p).
Thus, for any measure », L,(») ®, L,(pu, E,(2)) is linearly isometric to
L,(v)®, L,(p)®, L(p), but not order isometric to it.

We shall prove that if X is a separable Banach lattice which is linearly
isometric to a separable space L,(u), then there are measures »; and »,
(possibly one of them is zero) such that X is linearly isometric and order
isomorphic to L,(»)) ©, L,(v,, E,(2)).

We shall need some terminology and elementary results from the theory of
Banach lattices. The norm on a Banach lattice X is said to be order continuous
if whenever Z is a downwards directed set of positive elements of X with
infimum equal to zero, the infimum of the norms of the elements of Z is also
zero. A band in a Banach lattice X is a closed ideal B such that if Z C B and
the supremum of Z exist in X, then the supremum is in B. It is known, for
example, that if the norm is order continuous in X, then each net in X which
has a supremum converges to this supremum in norm. Thus, any closed ideal
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is automatically a band (see [3]). Moreover, if the norm is order continuous,
then for any band B there is a complementary band B+ = {x € X: |x| A
= 0forally € B} such that X = B @ B . The natural projection of X onto
B with kernel B+ has norm one and is called a band projection. The first
lemma has an easy proof and we omit it.

LEMMA 1. Let X be a Banach lattice with order continuous norm. If Y C X is
a closed subspace and P(Y) C Y forall band projections P on X, then Y is a
band in X.

LEMMA 2. Let X be a Banach lattice. If P is a band projection X, then
P =1(I + V) where V is a linear isometry and V? = I.

PROOF. Let Q = I — P, the complementary band projection to P. Clearly if
such a V exists, it must be V' = 2P — I. Thus we only show that 2P — [ is an
isometry (clearly 2P — I)* = I). Let x € X. Then

V() =QP - I)(x* —x7)=2P(x*)—=2P(x~)— x* +x~
2P(x*) = 2P(x" )= P(x*)— (11— P)(x")
+P(x" )+ (I - P)x7)
P(x*) = P(x") = (I = P)(x*) + (I - P)(x")
and the terms are pairwise disjoint. Thus

VOl =[P (x*) + (I = P)x*")=P(x" )= (1= P)x")

=|x* =X =]

LEMMA 3. Let X and Y be Banach lattices with order continuous norm. If @ is
a linear isometry from X onto Y such that for each band M C X, o(M) is a
band in Y and for each band N C Y, o~ \(N) is a band in X, then there is an
order preserving linear isometry of X onto Y.

ProoOF. Letx € X. Then p(x'!)is a band in Y containing p(x). Thus o(xtH >
@(x)**. Since ¢~ ! has the same property, ¢~ ! (p(x)"1) D (o~ Lp(x) 1L = x 1L,
Thus p(x)** D p(x*!) and we obtain () = o). If (x| Aly] = 0, then x
N yH ={0}. Hence p(x)** Np(y)** = {0} and lo(x)| Ale(»)] = 0.

Now let C = {x € X *: ¢(x) > 0}. Clearly C is a closed cone in X and
V' = C — Cis aclosed linear subspace of X. Let P be a band projection on X
and x € C. Then |p(Px)| Alp(x — Px)| =0 and 0 < @(x) = @(Px) +
@(x — Px). Thus ¢(Px) > 0= Px € C. Hence P(¥V) C V and by Lemma 1,
V is a band in X. Now suppose x € V'* and x > 0. Then ¢(x) < 0. For,
suppose @(x) =y, — y, with y, >0, y, >0, y, Ay, =0. Then x
= ¢ '(y) — ¢ '(y,) implies ¢ "!(y,) > 0 and ¢ ~!(y,) € V. Thus we define
Y by Y|V = ¢ and ¢|V'* = —¢. Then v is a linear isometry of X onto X
order preserving.

The main basis of our analysis is the theorem of Lamperti [5] on the
representation of linear isometries on L,(p). Since we are assuming that
L,(u) is separable, we can take L,(p)= LT, Z, p) where T=T,y T,
where either 7, = @ or T) = [0, 1], T, = @ or T, is a’ countable set in[2,3]
(for example). Moreover, 2|7, can be taken to be the Lebesgue measurable
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sets on T, (if T # @) and Z|T, to be the set of all subsets of T, (if T, # @),
and p can be taken to be Lebesgue measure on 2|7, (if T, # @), counting
measure on Z|T, if T, is finite and nonempty, and if 7, = {z,}, we take
p(t,) = 1/2" (recall the representation theory for separable L,( p) spaces).

THEOREM (LAMPERTI). Let | < p < oo andp # 2 and V be a linear isometry
of L,(n) onto L,(p). Then there is a measurable function h on T and a
measurable o: T — T such that o(T,) = T, (a.e.), p(T,) = T,, @ is essentially
one-to-one (i.e., one-to-one except on a set of measure zero), ¢ ~ ' is measurable,
and Vf = h(fe @) forall f € L,(p)and [ _, _ |hPP du= () for all measur-

v H(E)
able sets E C T, and |h| = 1 on T,.

If V2 = I (the identity), then it is easy to see that ¢? = identity and that
h=1/ho°¢since 1 = V¥1).

Moreover, we can decompose T into three disjoint measurable sets 4, A4,,
A, where Ay = (1: @(¢) = 1}, p maps 4, onto A, and 4, onto 4, and |h| = 1
on Ay, e.g,put A, = {t: o(r) >t} and 4, = {r: (1) < t}.

The crucial part of our proof depends on an analysis via the Lamperti
theorem of the decomposition of 7 whenever we have two projections
P,=3I + V) and P, = 1(I + V,) where V| and V, are idempotent linear
isometries on L,(p) and P, dominates P, i.e., P\P, = P,P, = P,. From the
Lamperti theorem we obtain functions h,, h,, ¢,, ¢, with the properties listed
in the theorem and the following remark. Let A4, 4, A, be the above
described sets relative to ¢,. Then on A4, we have that h{ = 1. Thus 4,
= A; UA; where Af = (1€ Ay hy(t) =1} and Ay = {r: h(1) = -1}
and ¢, maps 4, onto 4, and 4, onto A,. Now

PPy=5[I+V i+ Vo+ ViV, =5[1+ Vi + Vo+ V,V] = PP,
so that V|V, = V,V,. Since
ViVaf =hy-hye @y feo @ =hy-hiog-fog oq

for all f € L,(u), by putting f = 1 we obtain that h) - hy o @, = hy - hy ° @,
and, thus, fo @, o ¢, = fo ¢, o ¢, for all f € L,(u). Thus by taking f to be
the identity function on T (recall that we conveniently choose T C [0, 3]), we
see that @, ° @, = @, ° ¢;. Thus, if 1 € A4, then @ (@,(1)) = P(@)(1)) = @5(0)
and we have that @,(4,) C 4, On the other hand, if @,(¢ (1)) = @,(,(?))
= @,(?), then ¢t = ¢,(¢) and it follows that ¢,(4, U 4,) C 4, U A4,. Since ¢,
is onto (a.e.), it follows that @,(4,) = A, and @,(4, U 4,) = 4, U 4, (a.e.).

We shall now show that A, 4,, 4, can be further decomposed by using the
fact that P\P, = P,P, = P,.

LEMMA 4. (A) Let C={t € A, U Ay: @,(t) = t}. Then for

D=(4,UAA)\C
we have the following relations (a.e.).
@) hy=—1lonC,

(i) ¢, = @, 0n D,
(iii) hy = h, on D U Ay,
(iv) @, is the identity on Ay .
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(B) Let By= {1 € AJ: o)t)=1}, B,={1 € Af: @)(1) >t} and B,
= (1€ AJ: @)t) < ). Then A} = ByU B, U By, 9,(B)) = B,, 9y(B,)
= B,

PROOF. Since ¢, maps 4, onto 4, and 4, onto 4, and @, ° ¢, = @, © @, it
follows that ¢,(C N 4,) = C N A,. Let f = X4, the characteristic func-
tion of C N 4,. Then P,f=4(f+ h,f) (f° ¢, = f) has its support con-
tained in C N A4, and

PP f=%[f+hf+h(fop +hog fop)]=Pf.

Thus it follows that P, f =0 since h(f° @, + h,o @, - fop)=00n C N
A,. A similar argument shows that P,g =0 if g = X, . Thus
P(f+ g =3(f+g+ h(f+ g) =0 and it follows that h,= —1 on C.
Hence part (i) of (A) is true.

Suppose that ¢,|D # ¢,|D. Then there is a subset Z of D with positive
measure such that Z, ¢,(Z), ¢,(Z) are pairwise disjoint (consider Z = {t €
A, N D: ¢(t) > @,(r) and @,(¢t) > t} or the corresponding sets with A,
replaced by A, and/or greater than by less than). Let f= %,. Then
supp P,f = Z U ¢,(Z) but supp P,P,f D ¢,(Z) so that P, f # PP, f. Thus
part (ii) of (A) is established.

Since ¢, = g, on D, ¢; ' = ¢,, and ¢, ' = @, from the Lamperti theorem it
follows that |h)| =|h,| on @(D) = @y(D) and since hih; o ¢, = hyh, ° @,
= 1, it follows that |h,| =|h,| on D. Now suppose that h; = — h, on a subset

Z of D with positive measure and put f = X, ,. Then P,f=
L(f+ h% )
2 2 Vp(ZnAY)
P\Pf=1% [f+ X zaay + W fo@ + hy(hyo "p2)6‘x’(p|wz(2f'\A|)]
=i(f+ X zna) + MXgznay + Il ° @, f)
=i(/+ X zna) =~ MXoyznay —f) =0

since hy = —h, on @(Z N A,). A similar result holds for f = X, . Thus
we obtain a contradiction to the assumption that P,P, = P, since one of
Z N A, and Z N A, has positive measure. Hence 4, = h, on D.

If f€L,(pw and suppf C Ag, then P\ f=3(f+h feo)=3(f—f)
=0. Thus P,f= P,P,f=0. Since P,f=3(f+ hyf°@,), it follows by
putting f = %Ao‘ that i, = —1 and ¢, is the identity on 4, . Thus part (iv) of
(A) is valid.

Part (B) follows from the observation that ¢,(4,) = A4, since ¢,9, = @,9,
and that ¢, is the identity on Ay so that g,(4, ) = A4, .

We shall continue the above ordering on projections in the next lemma.
Specifically, if we have a sequence of band projections P, on a Banach lattice
X with order continuous norm and if P,P,,, = P,,,P, = P,,, for all n, then
inf P, = P is also a band projection, where P(x) = lim, P,(x) for all x € X.
Note that since the norm is order continuous, if x > 0, { P,(x)} is a decreas-
ing sequence of positive elements and, hence, must converge in norm to its
infimum. Thus P can be so defined. It is easy to check that P is a projection
onto MN;_,P,(X)= M and that M is a band in X. To see that P is the band

n=1

projection note that for any x > 0, Px A (x — Px) = lim, P,x A\ (x — P,x).
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We assume that the Banach space L,(p) has a lattice structure which
makes it a Banach lattice in the L -norm for the next lemma.

LEMMA 5. There is a band projection P which is minimal with respect to
property:

(*) For each set E C T of positive measure there is an f € L,( ) such that
(Pf)|E # 0.

PRrOOF. Since L,(p) is separable it suffices to show thatif P, > P, > - - -
is a sequence of band projections in the assumed Banach lattice structure
satisfying property ( * ), then so does P = inf, P, (the norm is order con-
tinuous on the Banach lattice structure under consideration since as a Banach
space L,(p) does not contain a linearly isomorphic copy of ¢,; see [8]).

Let P, = 3(I + V,) where V, is an idempotent linear isometry on L,( )
and V,f= h,(f° ¢, where h, ¢, are given by Lamperti’s theorem. The
condition ( * ) is equivalent to A, # 1 (a.e.) on sets where ¢, is the identity
since (Pf) - Xg =32(fKg + h-(fo @) Xg). For, 1fh——lonEand<pls
the identity on E, then (Pf) - X = 0 for all f and if (Pf) - = 0 for all f,
then for f = X, Xp = _h%w(j) for F C E, which implies that h= —1on
E and g is the identity on E.

Let Ay, n, 4, ,, A,, be the sets associated with P, in the remarks preceding
Lemma 4. Then using Lemma 4 we can define 4 and ¢ by A(¢) = h,(¢) and
@(1) = @,(1) if t € lim sup(4,, U 4,,) and n is the least integer such that
tE€ A, UA,, and h(t) = 1 and @(1) = ¢ if ¢ € lim inf 4.

Since ||h,| =1, |h|| =1 and Vf= h(f°¢)=1lim, V,f is an isometry.
Moreover, P = 1(I + V), and since h # — | where ¢ = identity, P satisfies
property ( * ).

We now come to the main theorem of the paper.

THEOREM. Let X be a Banach lattice linearly isometric to L,(p). Then there

are measurable sets Ay, A, in T such that X is linearly order isometric to
L,(4g) ©, L,(4,, E,(2)).

PrOOF. Let P be any band projection in X and 4,, 4, 4, the sets associ-
ated with P (see Lemma 4 and the remarks preceding it). Then L (A u4,) and
L (A o) are bands in X and in each case the band projections are glven by mu]tlph-
catlon by the associated characteristic functions. We prove this for L (A UA,)
and the other proof is similar. Suppose Q is a band projection and Q < P Then by
Lemma 4 it follows that the support of Q(f *% , U4 2) is containedinA4, UA,
forall fE€L p (W) If Q <I - P,then Lemma 4 shows the same result. Thus by
Lemma 1, L (A U A,)isaband in X. Let Q be the band projection of X onto
L (u) Let h2, ¢, be the functions such that Qf=%(f+h,foyp,))foralfe
Lp(u). Then for any measurable set Z C A, U A4,.

z = Q(Xz) =3(Xz + X (2))

Thus A, = 1 on Z and ¢,(Z) = Z. By Lemma 4 we conclude that ¢, is the
identity on 4, U 4,. Now for f € L,(p),

Of =3(f+ hyfe @) Ny a =1 X, dy
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We now assume that P is minimal with respect to property ( * ). Let Q < P
and let By, B, B, be the sets given by Lemma 4 for Q. Then u(B, U B,) = 0.
For, if not, then by the above L,(B; U B,) is a band in the range of P and
O, f=Pf-f- %Bluﬂz defines a band projection with property ( * ) which is
smaller than P. We define u: L,(p) — L,(4y) ©, L,(A4,, E,(2)) as follows:

u(f) =f- Xy +[(Pf)- Ny (ey + &) + (f = Pf)- Xy (e = )]

A routine calculation shows that u is a linear isometry and onto. By Lemma 3
we only need to show that  and u~! both carry bands onto bands. If Q is a
band projection and Q < P, then let By, and D be the sets in Lemma 4 for Q.
Then for f € L,(p),

(9f)- %Ao =f %Bo*
and
(Qf): Xy, =3(f Xyap + (B fo @) Ky np)
where h,, @, are the functions associated with P. That is,
Q(X)=L(B5)®, [P(X)n L(D)]
and
u(Q(X)) = L,(Bs" )&, L,(4, N D)(e; + &)

If 0 <I— P, then]— Q< P and if B, and D are the sets for I — Q as
above, then a similar argument shows that

Q(X)=L,(By )®, [(I - P)X)n L,(D)]
and u(Q (X)) = L,(By ) ®, L,(D)(e, — ey).
If (g, 82 83) € L, (A &, L,(4,, E,(2), then f=g- N, + (g, + &)

Xy, + (18 — &) ° @] X, u(f) =g and proofs similar to the above
show that u ! carries bands onto bands.

ADDED IN PROOF. The first author and S. Bernau have recently shown that
the same theorem holds in the general case. This was done by characterizing bicon-
tractive projections on L ,(u) as those projections such that 2P —/ is an isometry.
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