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BANACH LATTICE STRUCTURES ON SEPARABLE Lp SPACES

E. LACEY AND P. WOJTASZCZYK

Abstract. A complete characterization of those lattice structures on

separable Lp spaces which are Banach lattice structures under the Lp norm

is given.

The Banach spaces Lp (ju.) of all (equivalence classes of) ft-measurable real

valued functions / such that \f\p is u-integrable are among the most important

and the most elegant examples of Banach lattices (here we are taking

1 < p < oo and the norm to be the usual Lp norm given by ||/||

= (j\f\p d[i)x/p and the lattice structure to be defined in the usual pointwise

manner). In the separable case it is well known that Lp( /j,) is linearly isometric

and lattice isomorphic to exactly one of five concrete Lp spaces, namely, lp(n),

lp, L (= Lp[0, 1]), lp(n) ® Lp, and lp ® Lp where the direct sums are taken in

the p sense (see, for example, [3]). It has become of interest to explore the

question of classifying the lattice structures, if any, which can be put on a

Banach space to make it a Banach lattice (for a Banach lattice we insist that

for any element x in the space, llxll = |||x||| where |x| is the modulus of x in

the lattice structure). This question is naturally well posed in both the

isomorphic theory and the isometric theory of Banach spaces. The isomorphic

theory is concerned with when a given Banach space is linearly isomorphic to

a Banach lattice and the isometric theory simply replaces 'linearly

isomorphic' with 'linearly isometric'.

For example, it is well known that for p > 1, a separable space Lp(fi)

admits an unconditional Schauder basis {/„}, that is, there is a constant

K > 1 such that for any pair of finite sequences ax, . . . , otk and /?,, . . . , Bk

of scalars with |a,| < | Bt\ for i = 1, . . . , k, we have that

||2*=ia,/|| < /l||2*_i PJi\\. The smallest such constant K is called the uncondi-

tional basis constant for {fn} and it can be ea ily seen that if we define a new

norm on Lp(p.) by || Z~= t anfn ||' = sup {||2~= i&ncinfn II: ||3„ |< 1}, then this norm is

equivalent to the original norm and the /„'s have unconditional basis constant

equal to one with respect to this new norm. Moreover, it follows readily that

under the new norm that Lp(uj) can be given the structure of a purely atomic

Banach lattice simply by defining ^=xaJn > 0 if and only if an > 0 for all n

(by purely atomic we mean that every positive element dominates some atom,

e.g., 2^=1a„/„ > ajk where ak > 0). Thus P/)(rt) in this new norm and new

lattice structure is not lattice isomorphic to Lp(n) in the original norm and

lattice structure (however, the two are linearly isomorphic).
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Recently the second named author and Abramovic [1] have studied Banach

lattices which are linearly isomorphic to Ap(/x). For example, they proved that

/ is not linearly isomorphic to an atomless Banach lattice and that Lx and L2

have the property that if they are linearly isomorphic to an atomless Banach

lattice, then there is also a linear isomorphism which preserves the lattice

structure, i.e., the lattice structures on Lx and L2 are unique up to order

isomorphism.

In this paper we consider only the Banach lattices which are linearly

isometric to a separable Lpin). That is, we assume that L (/*) has some lattice

structure such that it is a Banach lattice under the L^-norm. We are able to

give a complete characterization of such lattice structures and show that

Lpin) is order isomorphic (but not order isometric necessarily) in its natural

order to each of these structures. One consequence of this is the known result

that a monotone basis for Lp[0, 1] (1 < p < oo) cannot have unconditional

basis constant equal to one (see [2] for a characterization of monotone bases

in Lp[0, 1]).
To see how to obtain some Banach lattice structures on Lpiji) let us

consider the two-dimensional space 7,(2) (1 < p < oo, p ¥= 2). Let ex, e2

denote the standard unit vector basis in lp(2). Then /, = (e, + e2)/2i/p and

f2 = (e, - e2)/2l/p together form an unconditional basis for lp(2) with basis

constant 1. Moreover, \\exfx + ^zfj^p ~ ||/i + /2L where e,e{l, - 1} for / = 1,

2. Thus it follows readily that the cone spanned by/,,/2 (i.e., C = {afx + bf2:

a, b > 0}) is a lattice cone and the/? norm is a Banach lattice norm for this

lattice. We shall denote this space by A/)(2). Thus we have that lp is linearly

isometric to (©2"_,AnL, where for each n, Fn = lp(2) or Fn = Epi2). Clearly

if at least one Fn = Ep(2), then (©2"=lA„)p is not an L^-space as a Banach

lattice, since, for example, the norm is not /7-additive (see [3]). Thus it is a

different Banach lattice structure on lp. More generally, if v is any measure

and A is a Banach lattice, then Lpiv, X) is the Banach lattice of all

measurable A-valued functions / such that /||/(0|r" ^(0 =||/]|£ is finite.

Moreover, if X is an Lp space, then Lpiv, X) is also an Lp space since the

norm in Lpiv, X) is /?-additive (see [3]). Since A^(2) is linearly isometric to

lp(2), for any measure /t, Ap(/t, Ap(2)) is linearly isometric to Lpi[i, lp(2))

which, in turn, is linearly isometric and order isomorphic to Lpifi) ®p Ap(/t).

Thus, for any measure v, Lpiv)®p Lpijx, Ap(2)) is linearly isometric to

Lpiv) ®p Lpiil) ®p Lifi), but not order isometric to it.

We shall prove that if A is a separable Banach lattice which is linearly

isometric to a separable space Lpin), then there are measures vx and v2

(possibly one of them is zero) such that X is linearly isometric and order

isomorphic to Lpivx) ®p Lpiv2, Ep(2)).

We shall need some terminology and elementary results from the theory of

Banach lattices. The norm on a Banach lattice X is said to be order continuous

if whenever Z is a downwards directed set of positive elements of X with

infimum equal to zero, the infimum of the norms of the elements of Z is also

zero. A band in a Banach lattice A is a closed ideal A such that if Z c A and

the supremum of Z exist in X, then the supremum is in A. It is known, for

example, that if the norm is order continuous in X, then each net in X which

has a supremum converges to this supremum in norm. Thus, any closed ideal



BANACH LATTICE STRUCTURES ON SEPARABLE Lp SPACES 85

is automatically a band (see [3]). Moreover, if the norm is order continuous,

then for any band B there is a complementary band B 1 = {x G X: |x| A|y|

= 0 for ally G B} such that X = B ® B 1. The natural projection of X onto

B with kernel B x has norm one and is called a band projection. The first

lemma has an easy proof and we omit it.

Lemma 1. Let X be a Banach lattice with order continuous norm. If Y C X is

a closed subspace and P(Y) c Y for all band projections P on X, then Y is a

band in X.

Lemma 2. Let X be a Banach lattice. If P is a band projection X, then

P = \(I + V) where V is a linear isometry and V2 = I.

Proof. Let Q = I - P, the complementary band projection to P. Clearly if

such a V exists, it must be V = 2P - P Thus we only show that 2P — / is an

isometry (clearly (2P - I)2 = I). Let x G X. Then

V(x) = (2P - I)(x+ -x" ) = 2P(x+ ) - 2P(x~ ) - x+ + x~

= 2P(x+ ) - 2P(x" ) - P(x+ ) - (/ - P)(x+ )

+ P(x-) + (/-P)(x-)

= P(x+ ) - P(x~ )-(I- P)(x+ ) 4- (/ - P)(x" )

and the terms are pairwise disjoint. Thus

||F(x)|| = ||P(x+ ) + (/ - P)(x+ ) - P(x" ) - (/ - P)(x" )||

= ||x+-x-|| = ||x||.

Lemma 3. Let X and Y be Banach lattices with order continuous norm. If cp is

a linear isometry from X onto Y such that for each band M c X, cp(M) is a

band in Y and for each band N c Y, cp~l(N) is a band in X, then there is an

order preserving linear isometry of X onto Y.

Proof. LetxGX". Then fix11) is a band in Y containing <p(x). Thus <p(xL1) D

fix)11. Since ip"' has the same property, f>~~ '(^(x)11) D (f~~ xfix)) ii = x11.

Thus fix)11 D fix11) and we obtain f(xL1) = fix)11. If |x| Alyl = 0, thenx11

n y1L = {0}. Hence fix)11 nf(y)li={0}md\fix)\A\fiy)\ = 0.

Now let C = {x G X + : cp(x) > 0). Clearly C is a closed cone in X and

V = C — C is a closed linear subspace of X. Let P be a band projection on X

and x G C. Then \<p(Px)\ A|<f(x - Px)| = 0 and 0 < cp(x) = tp(Px) +

tp(x - Px). Thus cp(Px) > 0 => Px G C. Hence P( V) c V and by Lemma 1,

V is a band in X. Now suppose x G V1 and x > 0. Then <p(x) < 0. For,

suppose <p(x) = y, - y2 with yx > 0, y2 > 0, y, f\ y2 = 0. Then x

= <P_1(yi) _ <P~\y2) implies cp~l(yl) > 0 and cp~'(y,) G V. Thus we define

\p by i^|V — cp and ^\VL = -cp. Then xp is a linear isometry of X onto X

order preserving.

The main basis of our analysis is the theorem of Lamperti [5] on the

representation of linear isometries on Lp(jx). Since we are assuming that

Lp(ii) is separable, we can take Lp(p.) = Lp(T, 2, ji) where P = P, u T2

where either P, = 0 or P, = [0, 1], P2 = 0 or P2 is a' countable set in [2,3]

(for example). Moreover, 2|P, can be taken to be the Lebesgue measurable



86 E. LACEY AND P. WOJTASZCZYK

sets on A, (if T ¥= 0) and 2| T2 to be the set of all subsets of T2 (if T2 ¥= 0),

and ju can be taken to be Lebesgue measure on 2|A, (if Tx =£ 0), counting

measure on 2|772 if T2 is finite and nonempty, and if T2 = {tn), we take

Hitn) = 1/2" (recall the representation theory for separable Lpin) spaces).

Theorem (Lamperti). Let 1 < p < oo and p =£ 2 and V be a linear isometry

of Lpip:) onto Lpifi). Then there is a measurable function h on T and a

measurable tp: T —> Tsuch that <p(A,) = Tx ia.e.), <p(A2) = 772, cp is essentially

one-to-one (i.e., one-to-one except on a set of measure zero), <p_1 is measurable,

and Vf = A(/ ° <p) for all f £ A (/t) and / _w JA|P dp = piE)for all measur-

able sets E E T, and |A| = 1 on T2.

If V2 = 7 (the identity), then it is easy to see that <p2 = identity and that

A = 1/A ° <p since 1 = K2(l).

Moreover, we can decompose T into three disjoint measurable sets A0, Ax,

A2 where A0 = {t: (pit) = t), (p maps Ax onto A2 and A2 onto ^4,, and |A| = 1

on ,40, e.g., put Ax = {<: tp(0 > /} and ^2 = {t: (pit) < t).

The crucial part of our proof depends on an analysis via the Lamperti

theorem of the decomposition of 77 whenever we have two projections

P\ = 2 (I + ^i) an(i A2 = ^(7 + V2) where Vx and K2 are idempotent linear

isometries on Ap(/t) and A, dominates A2, i.e., A,A2 = A2A, = A2. From the

Lamperti theorem we obtain functions A,, A2, cp,, (p2 with the properties listed

in the theorem and the following remark. Let A0, Ax, A2 be the above

described sets relative to <p,. Then on A0 we have that h\ = 1. Thus A0

= Aq uAq where A0+ = [t £ A0: A,(/) = 1} and Aq = {t: A,(/) = - 1}

and (px maps A, onto A2 and A2 onto Ax. Now

A,A2 = i [/ + K, + V2 + VXV2] = \[I + Vx + V2 + V2VX] = P2PX

so that VXV2 = V2VX. Since

V\ Vlf =  h\  ' h2 ° <Pl  •/ ° VlVl  =  h2 ■ h\   ° f>2 •/ ° <Pl  ° <P2

for all / £ Lpifi), by putting / = 1 we obtain that A, • A2 ° <p, = A2 • A, ° tp2

and, thus, / ° <p2 ° <Pi = / ° *Pi ° <p2 lor a^ / e A (ft). Thus by taking / to be

the identity function on T (recall that we conveniently choose T c [0, 3]), we

see that <p, ° <p2 = <p2 ° <p,. Thus, if / £ A0, then qp^^O) = ^("PiCO) = <P2(0
and we have that <p2(^0) C ^0- On the other hand, if <p2(<Pi(0) = <Pi(<P2(0)

= (p2(0. then t = <jp,(/) and it follows that (p2iAx u ^42) E Axu A2. Since <p2

is onto (a.e.), it follows that (p2iA0) = A0 and <p2(^, U A2) = Ax u A2 (a.e.).

We shall now show that A0, Ax, A2 can be further decomposed by using the

fact that A[A2 = A2A, = A2.

Lemma 4. (A) Let C = [t E Ax (j A2: <p2(0 = t).  Then for

D - (Ax u A2)\C

we have the following relations ia.e.).

(i) A2 = - 1 on C,

(ii) <p, = rp2 on D,

(iii) A, = A2 on D U ^r7,

(iv) (p2 « the identity on Aq .
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(B) Let B0 = {t G A + : <p2(t) = t), Bx = {/ G A + : cp2(t) > t] and B2

= {t G A+: cp2(t) < t). Then A+ = B0 U P, U B2, cp2(Bx) = P2, cp^BJ
= BX.

Proof. Since <p, maps Ax onto /12 and A2 onto /4„ and <Pi ° <p2 = <p2 ° fx, it

follows that <p,(C n Ax) = C n A2. Let/= 6XCn^,' tne characteristic func-

tion of C n Ax. Then P2/ = \-(f + h2f) (f ° cp2 = f) has its support con-

tained in C n Ax and

PiPif =l[f+h2f+ hx(f °<px + h2°cpx-focpx)] = P2f.

Thus it follows that P2f = 0 since hx(f ° <p, + h2 ° <p, •/ ° <p,) = Oon C n

y4,. A similar argument shows that P2g = 0 if g = 9CCny4 • Thus

^>(/ + S) = i(/ + c? + h2(f + g)) = 0 and it follows that h2 = - 1 on C.

Hence part (i) of (A) is true.

Suppose that <p,|P ¥= <p2\D. Then there is a subset Z of D with positive

measure such that Z, rp,(Z), rp2(Z) are pairwise disjoint (consider Z = {t G

Ax f\ D: cpx(t) > cp2(t) and cp2(t) > t] or the corresponding sets with Ax

replaced by A2 and/or greater than by less than). Let /= 9CZ. Then

supp P2f = Z u <p2(Z) but supp PxP2f Z> cpx(Z) so that P2f ¥= PxP2f Thus
part (ii) of (A) is established.

Since tp, = cp2 on D, cpx~' = tp,, and cp2 ' = <p, from the Lamperti theorem it

follows that |rj,| = |/!2| on cpx(D) = cp2(D) and since hxhx ° cpx = h2h2 ° <p2

= 1, it follows that \hx\ = \h2\ on P. Now suppose that hx = -/i2ona subset

Z   of   D   with   positive   measure   and    put    / =   9CZn/f •   Then   P2/ =

^2/-i[/+ ^9!(zn,,) + A,/° <P, + *i(*a ° «P2)%lV2(zn^)]

- *(/ + ^\(zn^,) + V\(zn.,) + hxh2 o cp2/)

= 4(/+  A2\(Zfl^,) ~  h2^2(ZnAx) -/)  = 0

since /i, = —/j2 on <p2(Z n ^4,). A similar result holds for/= %Zn;( . Thus

we obtain a contradiction to the assumption that PXP2 = P2 since one of

Z n Ax and Z n A2 has positive measure. Hence hx = A2 on P.

If /6L((i) and supp/c/(0-, then P,/ = |(/ + hj ° <p,) = |(/ - f)

= 0. Thus P2/=P2P,/=0. Since P2/ = ^(/ + h2f ° rp2), it follows by

putting/ = 9C,^- that h2 = — 1 and rp2 is the identity on ,40". Thus part (iv) of

(A) is valid.

Part (B) follows from the observation that cp2(A0) = A0 since cpxcp2 = cp2cpl

and that cp2 is the identity on /f0~ so that cp2(A£ ) = A$ .

We shall continue the above ordering on projections in the next lemma.

Specifically, if we have a sequence of band projections P„ on a Banach lattice

X with order continuous norm and if P„Pn + x = P„+XP„ = P„+. for all n, then

inf P„ = P is also a band projection, where P(x) = limn P„(x) for all x G X.

Note that since the norm is order continuous, if x > 0, (Pn(x)} is a decreas-

ing sequence of positive elements and, hence, must converge in norm to its

infimum. Thus P can be so defined. It is easy to check that P is a projection

onto n ™=XP„(X) = M and that M is a band in X. To see that P is the band

projection note that for any x > 0, Px A (x - Px) = lim„ Pnx /\(x — P„x).
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We assume that the Banach space Lp(ii) has a lattice structure which

makes it a Banach lattice in the Ap-norm for the next lemma.

Lemma 5. There is a band projection P which is minimal with respect to

property:

i * ) For each set E E T of positive measure there is an f E A (/t) such that

(Pf)\E * 0.

Proof. Since Lpifi) is separable it suffices to show that if A, > A2 > ■ ■ ■

is a sequence of band projections in the assumed Banach lattice structure

satisfying property ( * ), then so does P = inf„ Pn (the norm is order con-

tinuous on the Banach lattice structure under consideration since as a Banach

space Lpifi) does not contain a linearly isomorphic copy of c0; see [8]).

Let Pn = j(7 + Vn) where Vn is an idempotent linear isometry on Lpin)

and VJ= A„(/ ° <p„) where A„, <p„ are given by Lamperti's theorem. The

condition ( * ) is equivalent to A„ ̂  1 (a.e.) on sets where <p„ is the identity

since (A/) • %E = }(/9C£ + A • (/ » <p) ■ %E). For, if A = - 1 on A and <p is

the identity on A, then (A/) • %E = 0 for all/and if (A/) • %E = 0 for all/

then for / = %F, %F = — A 9C (^ for A c A, which implies that A = - 1 on

A and <p is the identity on A.

Let ^40, n, AXn, A%n be the sets associated with Pn in the remarks preceding

Lemma 4. Then using Lemma 4 we can define h and tp by A(/) = A„(/) and

(pit) = <p„(0 if / £ lim supiAxk u ^42yt) and « is the least integer such that

t £ Ax k u ^2,* and MO = 1 an<i <P(0 = ' if ? £ lim inf /10A:.

Since ||A„|| = 1, ||A|| = 1 and Vf = A(/° <p) = lim„ VJ is an isometry.

Moreover, A = \ (7 + K), and since A =^= — 1 where (p — identity, P satisfies

property ( * ).

We now come to the main theorem of the paper.

Theorem. Let X be a Banach lattice linearly isometric to A (jit). Then there

are measurable sets A0, Ax in  T such that X is linearly order isometric to

LpiA0)®p LpiAx,Epi2)).

Proof. Let A be any band projection in X and A0, Ax, A2 the sets associ-

ated with P (see Lemma 4 and the remarks preceding it). Then Lp{Ax Uy42) and

7, X40) are bands in X and in each case the band projections are given by multipli-

cation by the associated characteristic functions. We prove this for 7p(4, UA2)

and the other proof is similar. Suppose Q is a band projection and Q < A. Then by

Lemma 4 it follows that the support of Qif -%A VA ) is contained in Ax UA2

for all / £ L (u). If Q < 7 - A, then Lemma 4 shows the same result. Thus by

Lemma 1, L JA, U A2) is a band in X. Let Q be the band projection of A onto

L (it). Let A2, v?2 be the functions such that Qf= %if+ A2/o v52)forall/£

L (u).  Then for any measurable set Z C Ax U A2.

%z = e(%z) = H%z + V\2<z)).

Thus A2 = 1 on Z and <p2iZ) = Z. By Lemma 4 we conclude that (p2 is the

identity on Ax u ^42- Now for/ £ Lpin),

0=Hf+h2f'"P2)-^AlUA2=f-   ^A,UA2-
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We now assume that P is minimal with respect to property ( * ). Let Q < P

and let B0, Bx, B2 be the sets given by Lemma 4 for Q. Then ju(P, u P2) = 0.

For, if not, then by the above Lp(Bx u B2) is a band in the range of P and

Qxf = Pf — f • %B uB defines a band projection with property ( * ) which is

smaller than P. We define u: Lp(n)-> Lp(A0) ®p Lp(Ax, Ep(2j) as follows:

«(/)=/• 9E*.+ [(#)■ 5C^,(«i + «2) + (/- Pf)' «*,(«, - *2)]-

A routine calculation shows that w is a linear isometry and onto. By Lemma 3

we only need to show that u and u ~' both carry bands onto bands. If Q is a

band projection and Q < P, then let 50, and P be the sets in Lemma 4 for Q.

Then for/ G P/ju),

(20 •%,„ = /• %*.♦
and

(2/)- 9C, - *(/• ^,nD +(V0<Pi)-^inz))

where A,, cp{ are the functions associated with P. That is,

0(*) = M*o+)©, [p(x)nLp(D)]

and

«(C(*)) = MBo+ ) ®P LP(AX n P)(e, + e2).

Ii Q < I - P, then / - Q < P and if B0 and P are the sets lor I - Q as

above, then a similar argument shows that

Q(X) = p„(p0- ) ©, [(/ - p)(x) n p.„(P)]

and u(Q(X)) = Lp(B0  ) ®p Lp(D)(ex - e2).

If (g„ g2, g3) G P,L40) ®p Lp(Ax, Ep(2)), then /= g- %Ao + (g2 + g3) ■

%A + [hx(g2 — g3) ° tp,] • %A , u(f) = g and proofs similar to the above

show that u~x carries bands onto bands.

Added in proof. The first author and S. Bernau have recently shown that

the same theorem holds in the general case. This was done by characterizing bicon-

tractive projections on Lp(p) as those projections such that 2P - / is an isometry.
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