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Abstract. We present two theorems which conclude that polynomials in z

and a given continuous function / are dense in all continuous complex valued

functions on the closed unit disk. The first theorem requires that / be

differentiable and satisfy Re/Z > \fz\ in the open disk and also that

f~x(f(a)) be countable for each a in D. The second theorem requires that/

be a class C1-function in a neighborhood of the disk satisfying |/j| > \fz\

almost everywhere and Re/? > \fz\ everywhere inside the disk.

I. Introduction. This work contributes to the study of a certain basic

question in the theory of uniform approximation in the complex plane,

namely, to consider a continuous complex valued function defined on the

closed unit disk in the complex plane and to analyze conditions which allow

all continuous functions to be approximated uniformly on the disk by

polynomials in the identity function and the given function. The question

stems from the familiar and fundamental theorem of K. Weierstrass which

states that any continuous function on the disk can be approximated uniform-

ly by polynomials in the identity function and its complex conjugate function.

The ideas in this work have a debt to the paper of John Wermer [6] and they

draw from the author's paper [5]. Further, the author owes much to many

beneficial conversations with Andrew Browder about the problems dealt with

here.

We denote by C the complex plane and by z the identity function of C to

C or its restrictions. Let P be the set {s G C •■ \s\ < 1} and C(D) be the set of

all continuous complex valued functions on P. For/in C(P) we denote by Pj

the uniform closure on D of all finite sums 2,,7>o aijz'fJ where atj G C. We

aim to present some progress in the understanding of when and why Pr is

C(D).
Since Pj always contains the constants, separates points, and is closed under

uniform convergence, the Stone-Weierstrass theorem is available. However, it

is not usual to prove Pc = C(D) by showing that for each g in Pt, the complex

conjugate function g is also in Pj, except in very special cases, for example,

when/ = az + bz where a, b G C and b # 0. The usual methods of dealing

with this problem come from two sources: functional analysis and the theory
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of several complex variables. In this work, we use only techniques of

functional analysis and most of these can be termed classical. Some interesting

applications of several complex variables to this setting may be found in [3].

Concerning the situation when Pj =£ C(D), it is natural to seek a character-

ization of the elements of Pt. For instance, considering the case/ = |z| , we

see that/ is constant on any circle in D with center at the origin, and so any

function g in Pj is a uniform limit of polynomials in z on each such circle. In

this event, we know that g must agree on each circle with a unique function

which is continuous in the closed disk determined by the circle and analytic

inside the circle. More generally, S. N. Mergelyan presents a characterization

of Pj for any real valued function / in [4]. (Other results in this area may be

found in [7].) Since we are limiting ourselves to the task of determining when

Pj = C(D), we would like to mention only the version of Mergelyan's result

relevant to this, i.e., if / in C(73) is real valued, and if for each a in D the set

f    (f(a)) has no interior and does not separate C, then Pt = C(7J>).

The paper of J. Wermer previously mentioned yields a result which plays an

important guiding role for us. It states that if / = z + R where R satisfies the

Lipschitz condition |7?(s) - 7?(/)| < \s - t\ for all s, t in D with s//, then

Pj = C(D). Roughly speaking, it states that we can replace the function z in

the Weierstrass theorem by a function which is "near" z and still retain the

original conclusion. Concerning the term "near", it should be pointed out that

there exist functions/arbitrarily close to z in the uniform norm on D for which

Pj ¥= C(D); for example, approximate z by functions vanishing in a neighbor-

hood of zero. Also if the function / = z + R is a smooth function and if / is

"near" z in a class C1-sense, then 7? easily satisfies the Lipschitz condition so

that / satisfies Wermer's theorem. However, in addition, this smooth case

provides another link to the function T. In fact, we shall show that when 7?

satisfies a slightly stronger Lipschitz condition, then / is "like" z in the sense

that, regarded as a map from E2 to E2, f has negative Jacobian determinant

everywhere. This last property may be expressed in terms of the differential

operators 3/3z = \($/ox — id/dy), d/dz = jid/dx + <9/9y) applied to/by
(the inequality) |/z| > |/z| everywhere. And this fact leads to the reasonable

conjecture that if / is a smooth function in a neighborhood of D such that

l/zl > l/zl everywhere, then Pj = C(7)). We have not been able to prove the

conjecture, but in [5] we proved the hypotheses of the conjecture imply that

C(7)) is the uniform closure on D of rational functions in z and / which are

finite. And as a consequence of the present work, we verify the conjecture

under the stronger condition Re/2 > |/z|.

More specifically, we aim to present two settings which yield Pj = C(7)). In

both theorems we will require the function / to satisfy the condition Re f2

> |/z I in the interior of the unit disk as well as some regularity condition. The

first theorem is proved in §11 and involves the notion of/being differentiable

at a point, say z0, i.e.,

/ = f(z0) + fx(z0)(x - x0) +fy(z0)(y -y0) + oQz - z0|).

Theorem A.    Let f be in CiD) and satisfy

(i) f is differentiable in {s: \s\ < 1),
(ii)  Re/j > |/z| everywhere in [s: \s\ < 1},
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(iii) f~l(f(a)) is countable for each a in P.

Then Pf = C(D).

The second theorem concerns a smooth function and is proved in §111.

Theorem B. Let f be a class Cx-function in a neighborhood of D such that

\fz\ > l/zl almost everywhere with Re/j > |/z| everywhere in {s: \s\ < 1}. Then

Pf = C(D).

Finally, in §IV we offer some closing remarks including an observation

regarding approximation by z and / in an P/'-sense.

II. Proof of Theorem A. The main ideas in the proof can be termed

"classical" in the best sense; P/is a closed subspace of C(D), so by a standard

corollary of the Hahn-Banach theorem, Pj = C(D) if and only if there exists

no nonzero continuous linear functional on C(D) which annihilates Pf.

According to the well-known representation theorem of F. Riesz (due in full

generality to Kakutani), each continuous linear functional on C(D) is of the

form g -» / gdfi, where it is a (uniquely determined) complex regular Borel

measure on P. Thus, to show that Pj = C(D), it suffices to show that if /x is a

complex Borel measure on D such that f gdp: — 0 for all g G Pf (or more

briefly, it _L Pf), then tt is the zero measure. The argument then gets its

usefulness from some important properties of compactly supported measures

in C which we now quote in terms of our problem. The proofs may be found

in[l].
Lebesgue two-dimensional measure in C will be denoted by m and for any

measure ju. on P, |ti| will denote the associated positive total variation measure.

Definition. Let ju. be a measure on D. For all s G C, we put ji(s)

= S d\n\/\z - s\.

Lemma ILL With /x as above, fi is integrable over any compact set (with

respect to rn); in particular, jit < oo a.e. (m).

Definition. With it as above, for each s G C such that \l(s) < oo, we define

\l(s) = f d\L/(z - s).

Thus the function p\ is defined a.e. (m) and integrable over bounded sets. A

key role in this proof is played by

Lemma II.2. For any open set U in C such that p.(s) = 0 for almost all s in

U, we have |/x| (t/) = 0; in particular, /x = 0 if ji,(s) = 0 a.e.

We can now continue with the proof. Let it be a measure on D such that

ju. _L Pf.   We  will  show  ft = 0.   For   any  a,  a & D,  we  have  (z — a)~

= — 2o° z"/a"+x, the series converging uniformly on P, and since/ z"dp: = 0

for all n, we have ji(a) = 0. By the last lemma, this reduces our problem of

showing ii = 0 to the problem of showing p\(s) = 0 for almost all s in P.

Now put E = {b G D: n({b}) ̂  0}. P is a countable set. For each b G E,

put Eb = f~x(f(b)) and let F= UbBEEb. By hypothesis the set P has
measure zero. Hence, to prove the theorem it suffices to take a G D — F with

jii(a) < oo and to show [i(a) = 0. Let a be such a point and put X

= (z — a)(f - f(a)). We claim that A maps P into {s G C: Re s > 0}. Let us

temporarily assume the claim and finish the proof of the theorem. For
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n = 1, 2, ..., put pn = (z + n~x)~x and g„ = (/- f(a))pn ° A. Since the

image of D under A is a compact subset of the right half-plane, each pn is

uniformly approximable on that image by polynomials (in fact, it equals a

power series expansion). It follows straightforwardly that gn £ Pj for each n

and also that gn -» (/-/_(*))/(/-/(a))(z - a) in D so that g„ -+ (z - a)"1

in D— f (/(a)). But/ '(/(a)) is a countable set by hypothesis and is

disjoint from E by our choice of a and hence is a set of /t-measure zero. In

addition, since \pn\ < |z|~ in the right half-plane (independent of n) we have

|g„| < \z - a\~ in D and (by dominated convergence) jit(a) = lim § g„dp:

= 0. Thus, Theorem A is proved once we have established that

Rc[it - s)ifit) - fis))] > 0

whenever s, t £ D and this is what we show now. Fix s, t in D and put

F = Re[(/ - s)f] so that Re[(/ - s)ifit) - fis))] = Fit) - Fis). Our hypoth-
esis on / = u + iv is enough to conclude that Fit) — Fis) = dFz it — s) where

z0 sits on the open line segment joining s to t (it is simply the Mean Value

Theorem of elementary calculus applied to this situation). Furthermore, the

following equalities are true since F = Re(/ - s)u - lm(t - s)v;

dFit - s) = Re(/ - s)duit - s) - Im(t - s)dvit - s)

= Rc[it - s)((t - s)fz + it - s)f,)].

However, we have assumed that Re/? > |/z| everywhere in {s: \s\ < 1), so

that this last expression is nonnegative. We conclude dFZQit — s) > 0 which

says exactly that Re[(? — s)ifit) — fis))] > 0 and Theorem A is proved.

III. Proof of Theorem B. The main ideas in the proof are the same as those

in the previous situation except that the smoothness condition on / relaxes

somewhat the problem of showing /i(a) = 0 for almost all a in D. The fact is

that because of the lemma which follows, that problem is reduced to the case

when ft is absolutely continuous with respect to two-dimensional Lebesgue

measure.

Lemma III. 1. For any measure n on D and any function g of class C1 having

compact support in C, we have §D gdjx = ir~] Xc gzfrdm.

(The proof may be found in [1].)

Let fi be a measure on D such that n _L Pj. We show /t = 0. Exactly as

before, this reduces to showing p%s) = 0 for almost all s in D. Suppose first

that jtt is absolutely continuous with respect to two-dimensional Lebesgue

measure. Fix any a in D with /i(a) < oo and again put g„ = (f — f(a))p„ ° A

where A = (z - a)if — /(a)) and pn = (z + n~{)~ . In the same way as

before we have g„ £ Pj, \g„\ < \z - a\~x in D and g„ —> (z - a)~ in D

- f~lif(a)). And we could conclude jxia) = 0 (by dominated convergence)

provided that/"'(/(a)) has Lebesgue measure zero (and hence, ju-measure

zero). But this follows readily from the fact that |/z| > |/z| a.e. because the

Jacobian determinant for/is equal to |/z| - |/z| which is negative almost

everywhere, while at the same time we must have Sj-itjta)\ I l/zl — l/zI \dm

= 0. This last fact can be determined by examining the identity
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if-Kf(a))' ̂ |2 " lf^ldm = /c # {/"'(/(«)) n /-'W}^).

The identity may be found in [2] where it is shown that the function defined

in all C by F(w) = # [A n f~\w)} = the number of elements in the set

A n f~x (w) is Lebesgue measurable for any measurable set A. In our context,

of course, A = f~x(f(a)) so that F(w) is identically zero except for one point,

namely, w = f(a), and so the integral of P vanishes. Finally, let it be an

arbitrary measure which annhilates Pf. By the previous lemma we know

f g d/i = n~x f g^{l dm for any C1-function g. We deduce that for any non-

negative integers k, I

fzkflfzy.dm = irfzk(T1dli = 0.

Thus fjjim is an annihilating measure for Py, absolutely continuous with

respect to m. By what we proved above, we have/z/i = 0 a.e. (m). Since f2 # 0

a.e., we conclude p. = 0 a.e., and hence that ti = 0. The theorem follows.

IV. Remarks. 1. The proof of Theorem A still holds up if the hypothesis

on / is weakened from "/ differentiable" to "/ Gateaux differentiable".

2. The part of the proof of Theorem B which shows that any annihilating

measure for Pf which is absolutely continuous with respect to two-dimensional

Lebesgue measure is the zero measure still holds up if the hypothesis on / in

Theorem B is weakened to / being differentiable or even to / being Gateaux

differentiable. Hence, in that event, there are no such absolutely continuous

annihilating measures and, for example, we get IF (dm) density of polynomials

in z and /; in fact, we get weak-star density in P00 (dm).

3. Concerning the function / = z + R of Wermer's paper [6], we cannot

conclude that |/?| > \fz\ everywhere, never mind the stronger fact Re/Z

> |/J (for instance, if R = zz/4 + z2/4). However, if R satisfies |P(/) - R(s)\

< k\t - s\ for some constant k with 0 < k < 1, then we do get Re/f > |/r|.

For it is not hard to show that \RZ\ + \RZ\ < k and it is clear that fz = Rz,

Re/? = 1 + Re R2, so that Re/2 > 1 - \RZ\ > \RZ\. Thus, Wermer's theo-

rem (in weak form) follows from Theorem A.
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