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EXTENSIONS OF CONTINUOUS FUNCTIONS
FROM DENSE SUBSPACES

ROBERT L. BLAIR

Abstract. Let X and Y be topological spaces, let 5 be a dense subspace of

X, and let/: 5 -» Y be continuous. When Y is the real line R, the Lebesgue

sets of/are used to provide necessary and sufficient conditions in order that

the (bounded) function / have a continuous extension over X. These

conditions yield the theorem of Talmanov (resp. of Engelking and of Blefko

and Mrowka) which characterizes extendibility of / for Y compact (resp.

realcompact). In addition, an extension theorem of Blefko and Mrowka is

sharpened for the case in which X is first countable and Y is a closed

subspace of R.

We first quote (in Theorem 1) two basic results concerning extension of a

continuous function from a dense subspace of a topological space. Theorem

IA is due to Talmanov [10] (see also [5, Theorem 3.2.1]) and, in dual form, to

Eilenberg and Steenrod [3, Lemma 10.9.6] (cf. [5, Exercise 3.2A]). Theorem IB

is due, independently, to Engelking [4, Theorem 2] and to Blefko and Mrowka

[2, Theorem A]. (Theorem A of [2] includes the unneeded hypothesis that X is

Tx.) For additional results on extension of continuous functions from dense

subspaces, see McDowell [7].

Theorem 1. Let X and Y be topological spaces, let S be a dense subspace of

X, and let f •• S —* Y be continuous.

A (Taimanov). If Y is compact iHausdorff), then these are equivalent:

(1) / extends continuously over X.

(2) T/F| and F2 are disjoint closed subsets (or, alternatively, zero-sets) of Y, then

f~x(Fx) andf~x(F2) have disjoint closures in X.

B (Engelking and Blefko-Mrowka). If Y is realcompact, then these are

equivalent:

(1)/ extends continuously over X.

(2) If {Fn}™=x is any sequence of closed subsets (or, alternatively, zero-sets) of

Ywith n„°L,F„ = 0, then C\„»=xc\xrx(Fn) = 0.

By a zero-set is meant the set of zeros of a real-valued continuous function.

For the theory of realcompact spaces, see Gillman and Jerison [6].
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In this note we obtain a sharper version of Theorem 1A (resp. IB) for the

special case in which / is a bounded continuous function (resp. continuous

function) from S into the real line R; this is Theorem 2 below. Theorem 1, in

turn, will follow readily from Theorem 2. We also include a sharpening (for

real-valued functions) of a theorem of Blefko and Mrowka concerning

extension of a continuous function from a dense subspace of a first countable

space [2, Theorem D] (see Theorem 3 below).

If A' is a topological space, then C(X) (resp. C*(X)) will denote the set of

all continuous (resp. bounded continuous) real-valued functions on X. If

/ G C(X) and a G R, we set

La(f) = {x G X :f(x) < a},       La(f) = {xGX ■■ f(x) > a}.

Sets of the form La(f) or La(f) are Lebesgue sets of /. The point of Theorem

2 (which may be viewed as an analogue of [6, 1.18]) is that it characterizes

extendibility of / in terms of the Lebesgue sets of /. (Theorem 2 is thus a

fragment of a general program whereby real-valued functions are studied by

means of their Lebesgue sets; see, e.g., [8], [9], and [1, §§2-3]. Other aspects of

this program will be treated by the author elsewhere.)

Theorem 2. Let S be a dense subspace of a topological space X, let

f G C(S), and consider these conditions on f:

(a) / extends continuously over X.

(b) Disjoint Lebesgue sets of J have disjoint closures in X.

(c) D^clx(L_n(f) U L"(/)) = 0.
Then (a) is equivalent to the conjunction of (b) and (c); and iff G C*(S), (a)

is equivalent to (b).

Proof. First assume (a), so that/ = g\S for some g G C(X). To verify (b),

we need only note that if a < b, then

c\xLa(f) n c\xLb(f) C La(g) n Lb(g) = 0.

To verify (c), let p G X, choose n > \g(p)\ + 1, and note that {x Gl:

\g(x) - g(p)\ < 1} is a neighborhood of p in X which misses L_n(f)

U L"(f).
Observe next that, to verify (a), it suffices to show that / has an extension

f G C(S U {p}) for every p G X. (For then g •■ X -» R can be defined by

g = / on 5 and g(p) = f(p) for p G X - S; and since 5 is dense in X, g is

continuous [6, 6H].) For the remainder of the proof, we may therefore assume

that X = S U {p}, with p G S.

Assume (b) and (c), and let A = {s G R : p G cl Ls(f)}, B = [r G R = p

G cl Lr(f)}. Since X = cl 5, (c) implies that there is an n such that

p G cl Ln(f) n cl L~n(f). Hence both A and B are nonempty. Moreover, by

(b), we have s < r for every 5 G A and every r G B. Let s* = sup A,

r* = inf B, and note that s* < r*. If j* < r*, there is / G R with s* < t

< r*; but then p G cl(L,(/) U L'(f)) = cl S, a contradiction. Thus s*

= r*. Define g •■ X —> Rby g = f on S and g(p) = 5* = r*. We verify that

g is continuous at each point of X:
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Let x G X, e > 0, and V = (g(x) - t, g(x) + e).

Case \.x=p.LetU = X- c\(Lg{p)_t(f) U TJ^+f(/)). Since g(p) - €

< ^ < r < g(p) + e for some s G A and /• G B, it follows from (b) that

p e U, and clearly g(U) C F.

Case 2. x El S. There is an open neighborhood W of x in S with

/(PF) C (g(x) - (e/3), g(x) + (e/3)). Write W = S A G, with G open in X.

If /j G G, then g(G) = f(W) C F, so we may assume that p G G. Now
H/ c L^w-(e/3)(/), so we have/j G cl G = cl IF C cl L«w_(e/3)(/). If g(/j)

< g(jt) - (2e/3), there is r G B with r < g(x) - (2c/3). But then p

G cl Lr(/) C cl L ,x)_{2(/3)if), which is contrary to (b). Thus gip) > gix)

- (2«/3), and, similarly, gip) < gix) + (2c/3). We conclude that g(G) C V,

and hence g is a continuous extension of /.

To complete the proof, note that if / G C*iS) and if n > |/|, then

L_„(/) U L"if) = 0, so (c) holds automatically.
Proof of Theorem 1. A(l) => A(2). Assume that/ = g|S, with g •■ X -* Y

continuous. If Fx and F2 are disjoint closed subsets of Y, then

dxrxiFx) n cl*/-1^) c g-'(Fi) n g-'(F2) = 0.

Similarly, B(l) => B(2).

A(2) => A(l) (resp. B(2) =» B(l)). We may assume that the compact (resp.

realcompact) space Y is a closed subspace of a product Y' = Ilae/ ^<> where

F„ = [0,1] (resp. Ya = R) for each a G I (see [6, 11.12]). Let/„ = (prjF) o /

where pra is the projection of the product Y' of index a. It suffices to show that

each fa satisfies (b) (resp. (b) and (c)) of Theorem 2. (For then fa has a

continuous extension ga •■ X -> Ya, the diagonal map g = AaSIga •■ X -* Y' is

continuous, g = f on S, and g(X) = g(c\ S) C cl g(5) C y; cf. [4, Lemma

1].) For each a G R, letZa = Y n pra-1((-°o,a]), Za = y n pra-1(k+°°)).

Note that Za and Za are zero-sets in y and that La(fa) = f~x(Za), La(fa)

= f~x(Za). It follows from (the zero-set formulation of) either A(2) or B(2)

that if a < b, then La(fa) and Lb(fa) have disjoint closures in X; hence (b)

holds in either case. Moreover, nnxLx(Z_„ U Z") = 0, so (the zero-set

formulation of) B(2) implies that n^cl*(£_„(./„) U L"(/„)) = 0. Thus (c)

holds, and the proof is complete.

We note that, by a similar argument, Theorem C of [2] is also an easy

consequence of Theorem 2.

A subset 5 of a topological space X is C*-embedded (resp. C-embedded) in

X in case every/ G C*(S) (resp./ G C(S)) has a continuous extension over

X. The following corollary (formulated and proved in [6, Theorems 6.4 and

8.6] in the context of Tychonoff spaces; cf. [11]) is an immediate consequence

of either Theorem 1 or Theorem 2.

Corollary. Let S be a dense subspace of a topological space X.

A. These are equivalent:

(1) S is C*-embedded in X.

(2) Any two disjoint zero-sets in S have disjoint closures in X.

B. These are equivalent:

(\) S is C-embedded in X.
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(2) 7/ a countable family of zero-sets in S has empty intersection, then their

closures in X have empty intersection.

It is known that (the closed set formulation of) Theorem 1A holds if Y is

merely Tychonoff, provided that X is first countable [2, Theorem D]. For the

special case in which Y is a closed subset of R, we can apply Theorem 2 to

sharpen this result as follows:

Theorem 3. Let S be a dense subspace of a topological space X, assume each

p G X — S has a countable base of neighborhoods, let Y be a closed subspace of

R, and let f •• S —> Y be continuous. Then these are equivalent:

(1) / extends continuously over X.

(2) If Fx and F2 are disjoint countable closed subsets of Y, then f~X(Fx) and

f~X(F2) have disjoint closures in X.

Proof. (1) => (2). This follows as in the proof of A(l) => A(2) of Theorem
1.

(2) => (1). It suffices to show that / (regarded as a function from 51 into R)

has a continuous extension g ■ X —» R. (For then g(X) = g(cl S) C cl g(S)

C Y.) We verify that f ■■ S —> R satisfies (b) and (c) of Theorem 2.

Suppose first that (b) fails. Then for some a < b there exists p G cl La(f)

fl cl Lb(f). Obviously p G X — S, so p has a countable base of neighbor-

hoods {Un}™=x. Choose c G R with a < c < b. We shall show that there is a

countable closed subset F> of R with p G cl/_l(^i H Y) and Fx C (c,+oo).

Let s* = supfc eR^ecl Ls(f)}.
Case 1. s* < +oo. For each n > 0, we have c V (s* - (\/n)) < s*, so there

is s(n) G R with p G cl 7/w(/) and c V (s* - (\/n)) < s(n). Moreover,

p G cl Ls +'''"'(/)> so there exists a point jc„ with

x„ G f/„ n (A- - cl 7/*+('/«>(/)) n 7>>(/)-

Let F, = {/(*„) ; « = 1,2,...} U {s*}. Since |/(x„) - s* | < 1/Vi, we have

f(xn) —» 5*, and hence 7<j is closed in R. Clearly p G cl/~'(Fi n K) and

F, C (c,+oo).

Case 2. s* = +oo. Construct a sequence {xn}nx'=x as follows: Pick xx

G i/i n Lb(f); and if Xr, ..., jc„_i have already been chosen with x,-

G 17; n Lb(f) and /(*,■) >/(*,_,) V / (/ = 2,... ,n - 1), choose s G R

with p G cl Z/(/) and /(*„_,) V n < 5, and pick xn G f/„ D L5(/). Then

{/(x„)}"=1 is strictly increasing and f(xn) -* +oo, so Fj = {/(x„) : n = 1,

2,...} is closed in R. Moreover, xn G Un H Lb(f) for all «, so we have

p G cl/"'(F, n  T) and Fx C (c,+oo).

Similarly, there is a countable closed subset F2 of R with

p G cl/_1(F2 n  K)    and    F2 C (-oo,c).

Thus (2) fails.

Suppose next that (c) of Theorem 2 fails. Then there exists p

G Df=xc\x(L.nU) U LB(/)), and clearly p G X - S. Let {<7„}~=1 be a
countable base of neighborhoods at p with  Un D (7n+1  for each «.  Pick



EXTENSIONS OF CONTINUOUS FUNCTIONS 359

xx G Ux n (L_i(/) U TJ(/)); and if xx, ..., xn_x have already been chosen

with Xi e IT, Fl (£_,(/) U L(f)) and |/(x,.)| > |/(*,_,)| V i (i = 2,...,«
- 1), let w(«) be the least integer > |/(x„_i)| V n, and pick xn G (7n

n (L_mtnAf) U Lm(n)(/)). We thus construct a sequence {x„}~=1 with xn

e ^ {l/C*zz)IKT=i strictly increasing, and \f(xn)\ -> oo. Let

F[ = {z~ G R = |r| = |/(jc„)| for some n,n odd},

F2 = [r G R ; \r\ = \f(x„)\ for some «,« even}.

Then Fi and F2 are disjoint countable closed subsets of R with

P g ci/-1^ n y) n cl/~'(F2 n y),

so (2) fails once again. The proof is therefore complete.

We leave open the question of possible generalizations of Theorem 3 (for

Tychonoff spaces Y that are not necessarily closed subspaces of R).
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