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GENERALIZED MORSE SEQUENCES
ON n  SYMBOLS

JOHN C. MARTIN1

Abstract. A class of bisequences on n symbols is constructed which

includes the generalized Morse sequences introduced by Keane. The topo-

logical structure and endomorphisms of the resulting minimal symbolic flows

are described.

Introduction. We construct a class of bisequences on s symbols (s > 2)

which contains the generalized Morse sequences on two symbols described by

Keane in [9]. The orbit-closures of these sequences in the shift dynamical

system on .? symbols are point-distal symbolic flows, and we consider their

topological structure. In our main theorems, we describe the maximal equicon-

tinuous factor of such a flow; we prove that the symbolic flow is an isometric

extension of an almost automorphic extension of its maximal equicontinuous

factor; and we determine all endomorphisms of the flow. These theorems

generalize results of Coven, Keane, and the author on substitution minimal

sets. For basic definitions, the reader is referred to [3], [5], and [11]. The author

would like to thank the referee for a helpful suggestion regarding the proof of

Theorem 7.

1. Construction. Let 5 be an integer greater than 1, and let 5 = {0,1,... ,s

- 1}. Bk will denote the set of /c-blocks over S, X the set of sequences over S

(i.e., functions from the nonnegative integers to S), and fl the set of

bisequences over 5. If A G Bk, C G Bm, AC G Bk+m is defined by AC

= .4(0) • • -A(k - 1)C(0) • • • C(m - 1). For x an element of Bk, X, or fl,

x(j,m) will denote the m-block x(j)x(j + 1) • • • x(j + m — 1). If A G Bk, let
L(A) = k.

Now we take G = {a0,ax,... ,as_x} to be any subgroup of the group of

permutations of {0,1,... ,s - 1}, where aQ is the identity. Thus a, may be

considered as a function from Bk, X, or fl to itself. If A G 7?, C G Bk, define

A X C = ac{0)Aac{x)A ■ ■ ■ ac(k_x)A G Bjk .

For eachy > 0, let my > 2, and let bj be an element of Bm with bj(0) = 0.

Then we may define an element of X as follows:
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x = ■ ■ ■ ((b0 X bx) X b2) X ■ ■ ■.

For t > 0, let c, = (• • • ((60 X bx) X b2) X ■ ■ ■ bt); let n, = Lie,) = m0 ■ ■ ■ m,.

We observe that for each t,

(1) x = c^^c^a^c,) ■ ■ ■

for some sequence ix, i2, ... satisfying 0/'] i2 ■ ■ ■ im   _x = bt + x.

We assume that both be, and, for each t, the associated

(2)
sequence ix i2 ■ ■ An (\) contain every symbol in S.

Lemma 1. x is a periodic sequence if and only if, for some t, the sequence

ix i2 ■ ■ ■ in (I) is periodic of period s.

For s = 2, this is Lemma 1 of [9]. The proof in the general case is a

straightforward, if somewhat tedious, adaptation of that in [9].

We let T: Q -> Q denote the shift transformation: (Fco)(n) = co(n 4- 1) (n

GZ).

Proposition 2. There is an almost periodic point co in the shift dynamical

system (fi, T) with co(n) = x(n) (n > 0).

Proof. Let k > 0, and choose t so that nt > k; by (2) we may find u so

that each nr-block a,(c,) appears in cu. Now by (1), x = cuot (cu) • • •. Thus

any 2«u-block of x contains Oj(cu) for some j; but cu contains the n,-block

a~xic,). Thus every 2nu-block of x contains x(0,k). It is now an easy matter

to extend x to an almost periodic bisequence co.    Q.E.D.

We assume from now on that co is a fixed, nonperiodic, almost periodic

bisequence which extends x. We call co a generalized Morse sequence (though

in [9] the term is reserved for sequences of this type which are strictly

transitive). We denote by Xu the orbit-closure of co under T.

2. A basic lemma on the block structure of x. For t > 0, and A a zt-block

of x, A is said to be determined to order t if, whenever A = x(n,k) = x(m,k),

then m = n (mod nt).

Lemma 3. For any t, there is a k so that every k-block of x is determined to

order t.

Proof. It is sufficient to find some t for which the statement holds. Choose

t large enough so that c, = ^4TiC, where A and C both contain every symbol

in S, and max(L(A), L(C)) < njs. Now, by redefining m0, we may as well

assume z" = 0.

We show that some cu is determined to order 0. If not, then for each u,

cu = x(au,nu) for some au ¥= 0 (mod n0). By considering a subsequence, we

may assume that for some a (0 < a < n0), au = n0 — a (mod n0) for each u.

This implies that x = Daj](c0)oj2(c0) • ■ ■, where D G Tia, and any initial

portion of a ico)oj (c0) • • • appears in x beginning at some position equal to

0 mod n0. We consider two cases.

(i) n0/s < a < (1 — lA)n0. We have x = cQat (cf/ja, (c0) • • •. Consider the

sequence jx ixj2i2 ■ ■ •, and take anyjk. The last a-block of Ojfc0) is the first a-
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block of oik(c0), and it contains oy (C) since L(C) < n0/s. Thus it contains

every symbol in S. This implies that ik is determined uniquely by jk. Similarly,

given ik, jk is determined. Thus the sequence j\ /. • • • is periodic, since every

symbol has a unique successor; but this contradicts the fact that x is not

periodic.

(ii) a < njs or a > (1 - l/s)n0. Again c0ait(c0) ■ ■ • = Da^(c0) ■■ ■, where

D G Ba. This implies that for k, m > 0, x(kn0 + ma, n0) is a block of the form

a,(cn). It follows that if d is the greatest common divisor of «0 and a> men f°r

/c > 0, x(ztz7, fl0) is °f the form Oj(c0). Now let the distinct z7-blocks of the form

x(kd,d) be denoted Ax, A2, ..., Ar. Then x = At At ■ ■ ■, and for each k the

nonperiodic sequence ix i2 ■ ■ ■ contains at least k + 1 distinct /c-blocks. Letting

k — n0/d, we obtain k > s, using our assumption on a. We have shown that

there are more than s distinct «0-blocks of the form x(kd,n0); but every such

block is a,(c0) for some /. This contradiction completes the proof.    Q.E.D.

For s = 2, the above lemma is approximately Lemma 5 of [9].

We list some simple consequences of Lemma 3.

Lemma 4. (a) For each t, to(—n,,nt) = a^c,) for some i.

(b) If y G X, and T*ky converges, then for each t,jk— jm = 0 (mod n/) for all

sufficiently large k and m.

3. Equicontinuous factors of (Xu, T). We denote by (Z(k), 1) the minimal

rotation z -* z + 1 on the cyclic group Z(zt) of order k. If a = (an>ai> • ■ •)»

where a, > 2, and c7, = a0ax ■ ■ • a,, we let (A(a), 1) be the minimal equicontin-

uous flow z —» z + 1 on the group A(a) of a-adic integers—that is the inverse

limit of the groups Z(d/). (Here "1" means the element (1,1,...) G A(a).)

Proposition 5. There is a flow homomorphism f from (Xa, T) to (A(m), 1),

where m = (m0, mx,...), such that if z = (z0, zx,...) G A(m),/(_y) = z if and

only if y(—zt,nt) is of the form <J,(c,) for every t. For i G S, y G X, f(aty)

= f(y)- if z w not in the orbit of 0 in A(m) and y G/_1(z), f~x(z)

= {aty: i G S).

Proof. It is clear from (b) of Lemma 4 that for each t, the function ft

defined on the orbit of co by ft(Tkto) = k G Z(nt) extends continuously to a

flow homomorphism^: (A^, T) -» (Z(nt), 1), and the maps/, induce a homo-

morphism /. Suppose f(y) = z, and let T^u —> y. For each /, jk — jm

= 0 (mod nt) for k, m > k0. Thus for k > k0, Tjktc and y have blocks of the

form Oi(c,) in the same positions, and f,(TJkto) = zt. But clearly T-'kto(—zt,nl)

is a block of the desired form. The remainder of the first statement is proved

similarly. The second statement is now obvious. Finally, if f(y) = f(w) = z

= (zn.Zi,. •.) G A(m), then for each t,y(-zt,nt) = ait(w(-z,,nt)). But since

c0 contains every symbol, all the i/s are equal, say to i. If z is not in the orbit

of 0, it follows thaty = o,w>.    Q.E.D.

Corollary 6. If z G A(m) is not an integer, any point inf~x(z) is a distal

point. Hence (Xu, T) is point-distal.

If (X, T) and (Z, T) are discrete flows, then (X, T) is called a (proper) AI

extension of (Z, T) if (X, T) is a (nontrivial) isometric extension of some

(Y, T), which is an almost automorphic extension of (Z, T). We denote by

(X*, T) the maximal equicontinuous factor of (Xa, T).
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Theorem 7. (X*, T) is isomorphic to (A(m'), 1), for some m' = (m0',mx,

m2,...), where m'0 = m§r for some divisor r of s. (Xa, T) is a proper AI

extension of(X*, T).

Proof. We first show that (XU,T) is an AI extension of (A(m), 1). Let

(Y, T) = (Xu, T)/G (using Proposition 5). We then have (Xa, T) -*-> (Y, T)

-^> (A(m), 1), where hg = f and h~l(z) is a single point if z is not in the orbit

of 0. If we define T? on {(xx,x2): g(xx) = g(x2)} by R(x,y) = 0 if x = y,

R(x,y) =1 if x ¥= y, then R is continuous. Thus (Xa, T) is an isometric

extension of (Y, T).

Now from [10, Theorem 8.11], (Xa, T) is an AI extension of (X*,T). We

obtain the diagram

(Xa, T) -^ (W, T) -^ (X*,T) -** (Aim), 1),

where wrp = /, m is /--to-one for some divisor r of s, and p is s/r-to-onc. Thus,

using the criterion for two groups A(m) and A(m') to be isomorphic, we see

that X* is isomorphic to A(m'), where m' is of the desired form. Finally, it can

be seen that r ¥= s, so that p is not 1-1.    Q.E.D.

Corollary 8. If either (a) .s is prime; or (b) every prime factor of s appears

in infinitely many m, ' s, then (X* ,T) is isomorphic to (A(m), 1).

It is possible, however, to construct for each nonprime .r examples where

(X*, T) is not isomorphic to (A(m), 1).

Corollary 9. If Z is any infinite, compact, zero-dimensional, monothetic

group, 1 is a generator for Z, and s > 2, there is a generalized Morse sequence co

on s symbols with (X*, T) ^ (Z, 1).

Proof. This is a simple consequence of the fact that any such Z is

isomorphic to A(m) for some m [7].    Q.E.D.

4. Endomorphisms of (Xu, T).

Theorem 10. If\p is an endomorphism of(Xu, T), then i// = Tkamfor some

k G Z,m G S.

Proof. We let Ti^co) denote the set of /c-blocks of co. It is well known that

for some integer/) and some g: TF(co) -» S, the map <j> = Tp\p is the block map

gx (see [6]). For n > 1, letg„: Bj+n_x(u) -* T?„(co) be the function induced by

g, and choose n > 2n0 with j + n - 1 = nr Now for some unique r (0 < r

< n,), each block d>(co)(r + int,nt) is of the form aAc/). We assume r > 2n0;

the other case is proved similarly. Then for each i, d>(co)(r + (i - \)n,,n,) is

determined by u(int,n,). Let <px = Tr~"'<p. Then given either of the blocks

<px(u)(int,nt) and u(in,,n,), the other is determined. Then for u > t, <j>i(co)

• (inu,nu) is of the form ak(cu). (Otherwise, for some a with 0 < a < nu and

a = 0 (mod «,), we have <|>1(co)(a + inu,nu) = akjicu) for each i, from which

it follows that if u(inu,nu) = Oj.(nu), the sequence y0krjx kx • • • is periodic.)

Hence, for some m, tf>t(co)(0,nu) = am(0,nu) for each u, and thus <j>x = am.

Q.E.D.

5. Remarks. We comment briefly on the almost automorphic flows (Y, T)

obtained in Theorem 7, in the special case when G is the group generated by
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the cyclic permutation ox:j^>j+ 1 (modi). (Y, T) is isomorphic to a

symbolic flow, and the map g may be defined by (gx)(n) = x(n) + x(n + 1)

+ • • • + x(n + s — 1) (mod s). This is similar to the construction discussed in

[2] and [5]. (Y, T) is always a strictly ergodic flow, and thus using the results

of [9], we obtain examples of a two-to-one group extension of a strictly ergodic

flow which is not strictly ergodic. It is also possible to show that the only

endomorphisms of (Y, T) are powers of the shift.

Certain special cases of this construction have been discussed extensively.

By taking b0 = bx = ■ ■ •, and G the cyclic group above, we obtain a

substitution minimal set. If s = 2, every continuous substitution minimal set

can be obtained this way, and hence our main theorems generalize results of

Coven and Keane in [1] and [2]. In another special case (s = 4), it is possible

to obtain the strictly transitive sequence constructed by Kakutani in [8].
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