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THE FUNDAMENTAL THEOREM OF ALGEBRA
ON RATIONAL H-SPACES

LAURA WEISS!

ABSTRACT. A form of the Fundamental Theorem of Algebra is proven for
I'-H structures.

0. Introduction and summary of results. It is a curiosity that while the
Fundamental Theorem of Algebra is algebraic in content and statement, its
proof is topological. We show here that the structure of a rational H-space, or
I structure is sufficient to prove a form of the theorem.

In §1 we construct a rational H-space structure on the Stiefel manifold ¥ ,
which we believe has not been explicitly exhibited before. In §2 we prove that
any homotopy associative rational H-space is actually an H-space.

1. Rational H-spaces or I structures. A rational H-space is a triple (X,m,e)
consisting of a connected space X, a product map m: X X X — X which
preserves the basepoint e, and which satisfies the following condition. Let
@; : X = X X X be inclusion into the ith factor, i = 1, 2. Then m; = me¢; and
m, = mg, must induce automorphisms of H*(X; Q).

If m; =~ m, ~ id, then e is a homotopy identity and (X,m,e) is actually an
H-space.

For notational simplicity we will follow Hopf [4] and refer to rational H-
spaces as " structures.

ExampLES. (1) (Hopf [4]). For an odd dimensional sphere define m : §" X S”
— S" by m(p,q) = q reflected through the orthogonal complement of p. Then
m¥(z) = —z and m[*(z) = 2z where z generates H *(S”)

(2) Consider the Stiefel manifold ¥, of 2 frames in R” for odd n. ¥, can
be fibered as an n — 2 sphere bundle over "1 [5]. Since IT,,_5(S"') has a
cyclic infinite subgroup [3, p. 74], and II,(S"~2) is finite whenever k # n — 2
[7, p. 515), it is clear from the long exact sequence of the fibration that
I1,,_3(¥,) has a cyclic infinite subgroup, with generator, say g.

Let u be a generator of H?"3($2"3,Z). Then g,(u) = h((g]) where
h: 11y, 3(V2) = Hy,_3(V;5;2Z) is the Hurewicz homomorphism. Since
H*(¥,2; Q) = A(z3,-3, 1), an exterior algebra on odd dimensional generators
[6], we can apply a result of Arkowitz and Curjel [1] to conclude that
g*(u) # 0.

The cell structure of 1, is known to be S"2 U ety e Letp: Va2
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— §273 be the collapsing map. Then the composition

sz V 20N S2n 3><SZn 3 S2n 3 V2
n

n, n

is a I structure on V), where m is Hopf’s I' structure.

It is well known that if a CW complex X admits a I' structure, then
H*(X,Q) = A,eniz,} ® Beplx,} where A{z,} is an exterior algebra on odd
dimensional generators and P{x#} is a polynomial algebra on even dimension-
al generators. Furthermore, fory € H*(X,Q),

m*(y) =mf(MNO1+3y @y +18m(y)
with deg y” > 0.

2. Words on T structures. The product m induces a binary operation,
called convolution, on the set of maps from X to itself. fo g = m o fxg o A
where A(x) = (x, x), the usual diagonal. A word on X is the convolution of a
finite number of identity and constant maps. The identity map on X will be
denoted by ¢, the constant map at p by w, or simply w. Other identity maps
will be denoted by id.

THEOREM 1.1.  If (X,m,e) is a homotopy associative T structure, then X admits
an H structure.

PrOOF. It suffices to show that m* = m} = id. Then, by Whitehead’s
theorem, m, and m, are homotopy equivalences and m o (m; ! X m; ') is an H
structure.

If m is homotopy associative, then, in particular, (w - w)* - ¢ = 0* - (0 - ))*.
Direct computation shows that the left-hand side is m* and the right side is
mY* o m*. A similar computation holds for m}.

We adopt the technical convention that all words will be spelled correctly.
That is, convolution is always from the left, i.e.,

g8 & =8 (& (- (g&-1-8)) ")
and no two consecutive maps are constants. (This is always possible since
Wp * g = Wp )
Let { y;} denote the canonical basis for H *(X; Q) as a vector space over Q
correspondlng to {z Joen and {x,},cy. A typical element is of the form

YjZy 2y, 0t 2, X, 0 X, For each basns element y; we define an integer

}\(yj) = max{degree z,, degree x,,i = 1,....k;j = 1,...,r}.

e
Let G(X) be the vector space over Q spanned by {z,},en U {x,},er Define
a(z,) and ,B(z ) to be the summand of m] (z,) and m}(z,) Wthh hves in G(X),
ie, if m'(z,) =2 ¢z, + 2 a;y, a;a; € Q and A(y;) < degree z,, then
alz,) = X a;z,

Assoc1ated to every word f on X we define an automorphism of G(X) called
the exponent of f, €(f).

e«f)=1id if f =4,
=0 if f= o,

a+elg)ep ff=1u-g

«(g)° B iff=w-g
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If (X,m,e) is an H-space, then « = 8 = id and €(f) coincides with the
definition of exponent given by R. F. Brown [2].

LEMMA 2.1. If f: X — X is a word, then f*(z,) = e(f)z, + 2 a;y; where
A(y;) < degree z,.

PROOF. The result is clear if f = ¢ or w. We proceed by induction on the
number of maps convoluted to form f. If f = ¢-g, then f*(z,) = afz,)
+ 3 ay; + 2" B(z,), B(z,) = 2 b;z,, bjcq degree z, = degree z,. Hence

g*B(z,) = 2 big*(z,) = Z bi(e(g)z, + = a;y))
= e(g) o Blz,) + 2 ay;
with A(y;) < degree z,. The case f = w - g is a similar computation.(J

3. T-H structures. Following [2] we define C°(X), the open cone on X, as
X X [0, 00) with X X {0} collapsed to a point. Square brackets will be used to
denote equivalence classes and [x, 0] will be written as 0. Any T structure
(X,m,e) can be extended to a I' structure (C°(X),c(m),[e,1]) by defining
c(m)([x, 1], [y, s]) = [m(x, ), 1s].

A T-H structure (X,m,en) is a T structure (X,m,e) together with an H
structure on C%(X) for which 0 is the basepoint, i.e., n: CO(X) x CO(X)
- C%X) and 7([x,7],0) = 7(0,[x,7]) = [x,7]. We will denote the binary
operation 7 induces on words of the T structure (C°(X),c(m),[e, 1]) by 9. A
polynomial on C%(X ) is a map from C%(X) to itself of the form 81989 "
Q 8k where g; is a word on (C%(X ), c(m),[e, 1]). [x, 1] is a root of a polynomial
if f[x,7] = 0.

ExaMmpLE 3.1. Let X = S! considered as complex numbers of unit norm, m
is standard complex multiplication, 1 is usual addition. w, - " @ Wg, ,° o
Q"' @ W, is the familiar polynomial a, x" + a,_, "N+t gy,

Given a polynomial f = g; 9 g, ¢ - - - 9 &, define a polynomial

fis = Us,8) @ QY(s,8-1) 8 QUs.8iv1) @ R US, 8k )

i.e. apply y(s, ) to each word except g; where

(s, 8)[x,1] = O(s,g[x,7]) and O(s,[x,1]) = [x,s1].

The polynomial f is admissible if f;  is proper for some i uniformly in s, i.e. i
extends to the suspension SX viewed as the one point compactification of
C%(X). Not all nonconstant words are admissible.

ExampLE 3.2. Consider the quaternions as C°(S3). Then the polynomial
@) @ ¢ @) @ W), * ¢ 1s not admissible and does not have a root.

LEEleA 33. Iff =g 9 Qg is an admissible polynomial with fi s proper,
then f =~ g, where tilde denotes the extension to SX.

PROOF. Define H : SX X I — SX by H([x,1],s) = f[x,1].

A word g on (X, m,e) is compatible with m if €(g) # 0. A polynomial
S =8 9 ¢ gis compatible if fis admissible and g; is compatible with c(m).
Define a word g; on (X, m,e) by g;(x) = g;[x,1]. Thenby 33, f~ g, =~ 3 z.
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EXAMPLE 3 4. Let m: S' x S' - S! be given by m(e',e®) = =9 The
polynomial 2 ¢ Wleim2 | is admissible but not compatible. In this case g; =
and (g) = 1 — 1 = 0. It is not hard to show that f is rootless.

4. Fundamental Theorem of Algebra.

THEOREM. (X, m,e,n) is a [-H structure with H*(X; Q) = A{z,} ® P{x,).
Every polynomial on C°(X ) which is compatible with m has a root.

PROOF. Suppose f =g, 98, ¢ 9 g By compatibility f ~ g; and «(g,)
#0. g¥@,) = e(g,)z + 3 ay;#0 by Lemma 21. Then f*o(z,)
= Sg*(0z,) = 0g*(z,) # 0 where o : H*(X) — H*(SX) is the suspension
homomorphism.

On the other hand if fis not onto then its image will be contained in a
contractible space and f* = 0.

Note this generalizes Theorem 2 of [2].

REFERENCES

1. M. Arkowitz and C. R. Curjel, Zum Begriff des H Raumes mod %, Arch. Math. 16 (1965),
186—190. MR 31 #4031.

2. R. F. Brown, Words and polynomials in H-spaces, Amer. J. Math. 96 (1974), 229—236.

3. P. J. Hilton, An introduction to homotopy theory, Cambridge Tracts in Math. and Math.
Phys., no. 43, Cambridge Univ. Press, New York, 1953. MR 15, 52.

4. Heinz Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerun-
gen, Ann. of Math. (2) 42 (1941), 22—52. MR 3,61.

5. 1. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. 1,
Proc. London Math. Soc. (3) 4 (1954), 196—218. MR 15, 892.

6. Clair E. Miller, The topology of rotation groups, Ann. of Math. (2) 57 (1953), 90—114. MR
14, 673.

7. Edwin Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, COLLEGE AT POTsDAM,
PorspaM, NEw YORrk 13676



