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A GEOMETRIC INTERPRETATION OF A
CLASSICAL
GROUP COHOMOLOGY OBSTRUCTION

R. O. HILL, JR.

ABSTRACT. For a non-Abelian group G, we show that the obstruction to the
existence of an extension of G by II that induces ¢: IT — OutG is also the
k-invariant of the classifying space for K(G, 1)-bundles.

1. In the classical theory of group extensions, there arises a group cohomol-
ogy obstruction. This paper studies some topological implications of that
obstruction, giving it a geometric interpretation and augmenting the classifica-
tion of fibrations by J. Siegal [15], [16] with the case the fiber is a K(G, 1), G
not Abelian.

If 1 > G— E— Il - 1is an extension of the group G by the group II, it
induces either an action ¢: II — AutG, if G is Abelian, or a “semiaction”
¢: IT - Out G = Aut G/InG, otherwise. See [9, p. 124]. Given G not Abelian
and a ¢: II — Out G, there need not exist an extension inducing ¢. Indeed, let
C be the center of G and «a: OutG — AutC be induced by restriction
Aut G — Aut C. By [4] or [9, p. 128] we have

THEOREM A. There is an obstruction k € H&,(H; C) to the existence of an
extension of G by I1 which induces ¢. If k = 0, the set of all equivalence classes
of all such extensions is in a 1-1 correspondence with Ha2¢(H; C).

In §4 this obstruction is given in detail, and we prove the following, which
shows this obstruction has a “universal example.”

THEOREM B. Let U € Ho(3 (Out G; C) be the obstruction to the existence of
an extension of G by Out G which induces id: Out G — Out G. Then for any
¢: I1 > Out G, ¢*(U) is the obstruction k of Theorem A.

Recall, even though K(G, 1) is not an H-space (for G not Abelian), there is
a universal classifying fibration K(G,1) — E & B. By Gottlieb [6, p. 54],
m(B) = Out G, m(B) = C and 7(B) = 0, otherwise. Thus B has a single
(twisted) k-invariant in H3(K(Out G, 1);{G}) (where { } denotes local coeffi-
cients). We denote by ®: Hy, (IT; C) — Hyi (K(IL, 1); {C}) the natural isomor-
phism (see [9, IV. 11]). The main result of this paper is

THEOREM C. Let U be given by Theorem B. Then ®(U) is the (twisted) k-
invariant for the universal classifying space for K(G, 1) bundles.

Theorem A has a natural geometric consequence. Given an extension
G 5 E 5 11, we can construct a fibration K(G, 1) - K(E, 1) 25 K(I1, 1)
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in which iy, = i and p}, = p on the fundamental groups. In any fibration,
“dragging” the fiber around loops in the base (backwards) induces an action
of m(base) on m,(fiber), but only modulo the action of m on m,. Thus, the
fibration p’ induces a geometric “semiaction” m (base) — Out (n (fiber)) in
addition to the algebraic one.

THEOREM D. These two “semiactions” are the same.

This may be proven by extending either the proof of Theorem I(a) in [7] or
(14, pp. 86-88]

Using ® we therefore easily get as a corollary of Theorem A:

THEOREM E. Given a ¢: I1 — Out G, there is an obstruction
k € Hgy(K(IL, 1):{C})

to the existence of a K(G, 1)-fibration over K(I1, 1) which induces ¢. If k = 0, the

set of all equivalence classes of such fibrations is in a 1-1 correspondence with
HZ(K(IT, 1);(C)).

Although Theorem A gives a proof of this, it does not give any geometrical
insight to this geometric fact. Theorem C leads to a very satisfactory geometric
proof, which is given in §3.

The proof of Theorem C yields a complete description of p.

THEOREM F. Let K(G,1) > E & B be the universal K(G, 1)-fibration. Then
E is a K(Aut G, 1), its homotopy sequence reduces to the natural 0 > C - G
—> Aut G - Out G — 1, and the “‘semiaction” of m (base) on m (fiber) corre-
sponds to the identity: Out G — Out G.

Theorems C and F follow from 3.1 and 3.2.

I would like to thank Professor William Massey who first posed to me the
problem of geometrically understanding Theorem A.

I understand recently that some of the above with somewhat different
proofs have been known to M. G. Barratt.

As a matter of convenience (see the second half of [3]), the remainder of this
paper is done in the category of semisimplicial complexes. The reader is
assumed to be familiar with May [10], as notation tends to be based on that
text.

2. We give a concise development of L, (C,n) and its classifying properties.
For more details see [5], [8], [11], [12], [13], [15], [16], [17].

We will denote an Eilenberg-Mac Lane complex of type (C,n) by K(C,n),
its “universal class” in H"(K(C, n); C) by V and the universal principal “loop-
path” fibration by K(C,n — 1) > L(C,n) £ K(C,n). Let W(II) denote the
standard free acyclic semisimplicial complex corresponding to the group II. If
II acts on C via ¢: IT = AutC, then I acts on both K(C,n) and L(C,n)
naturally. Using the diagonal action, we denote W(II) X K(C,n)/II by
L,(C,n) and W(II) X L(C,n)/II by T,(C,n), and obtain from P a Kan
fibration K(C,n — 1) > T.,(C,n) %> L,(C,n). (The inclusion of W/(IT) X
* into W(IT) X K(C, n) induces a natural K(II, 1) contained in L_(C,n).)
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THEOREM 2.1. Let n > 2. (1) (L, (C,n)) is 11, if i = 1; C, if i = n; 0,
otherwise; and the action of m on m, is .

(2) There is a universal class v € HJ(L,(C,n),{C}), where this denotes
cohomology with local coefficients twisted by ¢. If X is a semisimplicial complex,
then f < f*(v) is a 1-1 correspondence between the set of based homotopy classes
of maps from X into L_(C,n) which induce

B: m(X) = m(L,(C,n)) and Hgp(X;{C}).

(3) 4 map f: X = L,(C,n) lifts if and only if f*(v) = 0 if and only if f is
homotopic rel base point to a map whose image is in K(I1, 1). If f*(v) = 0, the
set of homotopy classes of such liftings is in 1-1 correspondence with
Hyg' (X;{C)).

Parts (1) and (2) are proved by Gitler [5], and part (3) is essentially proven
in Nussbaum [11], [12] and Siegel [16].

The space L,,,(C,n) is understood to have the natural action of  on 7.

Suppose a Kan complex has two nonzero homotopy groups, = (X ) = II,
m,(X) = C, and m acts on 7,(X) with ¢: II - AutC. Then X can be
constructed, up to homotopy, as the pullback from the fibration p by a map
fr K(IL,1) > Ly, (C,n + 1) = L such that ¢ = f,: m(X) — m/(L).

DEFINITION. The element f*(v) € HJ'(K(TL, 1);{C}) is the (twisted) k-
invariant of X.

As a simple illustration, we observe

PROPOSITION 2.2.  Let n > 2. The complex X is a L,(C,n) if and only if its
twisted k-invariant is 0.

ProoF. Exercise. See Olum [13] or Robinson [17]. The case n = 1 is treated
in [7].

COROLLARY 2.3. The universal classifying space for K(G,1) bundles is a
Loy 6(C,2) iff the universal example U = 0.

3. We prove Theorems C and F and give a geometric proof of Theorem E.

Let AK(G, 1) be the semisimplicial group complex of all automorphisms of
K(G,1) and let AK(G,1) - W > BAK(G, 1) = B be its universal principal
fibration. Then the associated K(G, 1) bundle

AK(G, 1) XyxG1y K(G, 1) = W g6 K(G, 1) > B

is the universal K(G, 1) fibration K(G, 1) - T -4 B. Compare with [1, 5.6]. By
Gottlieb [6], m(B) is Out G, if i = 1; C, if i = 2; and 0, otherwise (where C is
the center of G). Essentially, since the homomorphism induced on the
fundamental groups by the map AK(G,1) X K(G,1) = K(G, 1) is addition
C X G — G, the homomorphism 3: m, — m in the homotopy sequence for g
“is” the inclusion of C into G. Thus T'is a K( , 1) and the homotopy sequence
for g reduces to 0 > C > G - m(E) - OutG — 1. In §7 we will prove the
following:
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THEOREM 3.1. There is a Kan fibration K(G,1) > E 25 B with the proper-
ties:

1. The long exact homotopy sequence for p is all zero except for 0 — m(B)
- n(K(G,1)) > m(E) > m(B)—> 1, and this is 0> C—>G— AutG
- Out G — L.

2. The “action” of m(B) on m(K(G,1)) which is a homomorphism m(B)
— Out G is the identity.

3. The twisted k-invariant for B is u = ®(U), as described in Theorem C.

Since this is a fibration with fiber a K(G,1), there is a map f: B
— BAK(G, 1) which induces p.

THEOREM 3.2. The map f is a homotopy equivalence, and the constructed
bundle is the universal bundle.

Theorems C and F easily follow from 3.1 and 3.2.

PrOOF OF 3.2. Since actions of m (base) on the fiber are preserved under
pullbacks, it follows from (2) that the action in the universal fibration is also
the identity and that f, : m(B) — m(BAK(G, 1)) is an isomorphism. The map
of long exact homotopy sequences induced by f now shows f induces an
isomorphism in homotopy groups.

GEOMETRIC PROOF OF THEOREM E. A homomorphism ¢: IT — Out G induc-
esamap ¢": K(II,1) - K(OutG, 1) and using §2 we get the following diagram
(where, as usual, we confuse the element v € H (K(OutG,1);{C}) and a
map u: K(OutG, 1) = L,,,~(C,3) such that u* (u) = u (given by 2.1.2)):

KG,1) — E
[p K(C.2)
(33) K(C, 2)" - _ B - TAut C(Cv 3)
¢ _ - l
Ty “ Ly, HC.3)
K(n, 1) . K(Ollt G, 1) - “Aut &

Let “the obstruction” be ¢'* (). Then, as usual, the obstruction = 0 iff there
is a lifting ¢” of ¢’ (by 2.1.3) iff there is a K(G, 1) fibration over K(I1, 1) with
“induced” action ¢ (this last follows since p is the universal fibration, by using
pullbacks, and since ¢ = ¢4 : m(K(I1, 1)) — = (B)). If the obstruction is zero,
i.e., if there is a K(G,1) bundle over K(II,1) with ‘“action” ¢, then
H, 2(K(I'I 1);{C}) is in 1-1 correspondence with the set of homotopy classes of
hftmgs K(I1,1) — B of maps homotopic to ¢’ (by 2.1.3) which is the set of
homotopy classes of maps K(II,1) - B which induce the homomorphism
¢: m(K(IL, 1)) = m(B), which in turn is in 1-1 correspondence with the
equivalence classes of K(G, 1) fibrations over K(II, 1) with “action” ¢.

4. We briefly recall the basic algebra we need.

The bar construction on II, {B,,9,}, is a differential graded II-module,
where B, is the free Abelian grop generated by all symbols of the form
xolx |-+ |x,), where x; € Il and x; # 1if i > 1. See [9, pp. 114, 189]. If the
Abelian group C is a Il-module by vy:II — AutC, then get
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9y : Hom ,(B,_,,C) = Homy ) (B,,C)

and define H'(K; C) = ker 3),,/imd, .
Let G be a group, C its center and a: Out G — Aut C the natural homomor-
phism. Let ¢: IT — Out G be a homomorphism. Consider the diagram

In G ' /n

.1) f/ \ //9/ 1"’

i j <

0 - ¢ 4 ¢ L Auc L ouwe o 1

where p and p’ are the quotient homomorphisms, i and i’ are the inclusions,
and j = i’p’ so that the row is exact. For each x € II, pick ¢'(x)
€ AutG so that p¢' = ¢ (¢’ is just a function!) but pick ¢'(1) = 1. Since
Plo’(x)' ()¢’ (xy) '] = 1, for each (x,y) € II X IT we can pick g(x,y) € G
such that ¢'(x)¢’(y) = jg(x,»)¢'(xp), but pick g(l,y) =1 = g(x,1). The
associative law in Aut G gives j[o'(x){g(y, 2)}g(x,y2)] = j[g(x,y)g(xy,z)] so
that for each x, y, z € II there is a K(x,y,z) € C such that

(42) ¢'(x){g(r,2)}g(xp,2) = iK(x,y,2)g(x,y)8(xy, 2).
Letc € Homz(m(B3 (IT), C) be given by

(4.3) e(xp[x1[x2]x3]) = {ad(xg)} K(x,y, 2).

Then by Eilenberg and Mac Lane [4] (or see [9, pp. 126-128]):

THEOREM 4.4. The cochain c is a cocycle and its cohomology class {c}
€ Ha3¢(H; C) is independent of the two choices made in the construction of K.

There is an extension of G by I1 which induces ¢ if and only if {c} = 0.
Consider the special case IT = OutG and ¢ = id. We denote by

v: OutG — AutG, f: OutG X OutG — G,

4.5
(45) k: OutG X OutG X OutG —» C

the functions constructed as above. We let U € H2(OutG;C) be the
corresponding cohomology class.

THEOREM 4.6. This class U € H2(Out G; C) is the universal example for
this obstruction. le., given ¢: I1 — Out G, then $*(U) € Ha3¢(H; C) is the
obstruction to the existence of an extension of G by 11 which induces ¢.

ProoF. Simply let ¢" = vo, g = f(o X ¢), and K = k(¢ X ¢ X ¢), verify
the relations, and use 4.4.

5. Description of the natural isomorphism ®. For a group II, let K(II) be the
standard Eilenberg-Mac Lane semisimplicial complex which is a Kan complex
and is a K(II,1). Its n-simplices are ordered n-tuples of elements of II,
{ay,...,a,) for n > 0, and a single O-simplex { ). It has face and degeneracy
operators
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00<ay, ..., a,) =<Lay,...,a,), ,4ay,....a,) =ay,...,a,_1),
0;<ay, . ..,a,) ={ay,....a;a;41,....a,), 0<i<n,
siayy ... a,) =<ay,....aq;, La;oy,....a,), 0<i<n

Let B(I1) be the bar consturction on II (see §4), let C be a II-module,
¢: B,(IT) = C an equivariant cocycle so that {c} € HJ(IT; C).

LEMMA 5.1.  The canonical isomorphism ®: HJf (I1; C) — H: (KAT);{C})is
given by B <ar, ... a,> = ellay| -+ |a,]).

ProOF. Extend the argument given in [7, §3].

6. A construction of a certain Kan fibration. If o: IT — G is a group
homomorphism, then «’: K(IT) — K(G) by «'{a,,...,a,) = {aaq,...,aa,)
is a simplicial map and oy : 7 (K(I1),{ )) = m(K(G),{ ) is a.

LeEmMMa 6.1. If1 > G -5 E 25 T1 - 1 is exact, then p': K(E) — K(I1) is
a Kan fibration with i’: K(G) — K(E) the inclusion of the fiber.

Proor. This is well known and is just a checking of the definitions.

We will need an explicit description of T = K(E) as a twisted cartesian
product K(G) X, K(IT). The extension in 6.1 induces a homomorphism
¢: IT - OutG. Following 84, pick a function ¢’: [T - AutG such that
pd’ = ¢, ¢'(1) = 1. Since the obstruction is zero, we can pick a g: IT X II
— G such that k(x,y,z) = 0, all x, y, z € II (see 9, p. 127, 8.5]). Thus

(6.2) o' (){g(»,2))g(x,yz) = g(x,»)g(xy,2)

(and g(x,1) =1 = g(l,y)). Then T = K(G) X K(IT) as a set with the
definitions of i’, p’, s; for all i, and 9; for i > 0 obvious.
6.3. Define 3y(a, b) = ((b)dya, 9y b), where

(1(b)3ga); = ¢’(b1)_]{g(b1,b2 oo bi_y)a;g(by,by - bi)_l},

for i=2,...,na="{<q,...,a,) € K(G),, b =<b,...,b,) € K(I]),.
Easily, with details left to the reader, T is a semisimplicial complex and
K(G) —» T — K(I1) is the required Kan fibration. We note that the relation
9909 = 9p9; is exactly where 6.2 is needed. (6.3 was obtained from p’ by
working backwards. See [10, §19].)

7. Proof of 3.1. Let U be as in Theorem B and u = ®(U) (see 5.1). Let
K(C,2) > B -5 K(OutG) be the (pullback) twisted cartesian product with
(twisted) k-invariant u (see 3.3). So B = K(C,2) X K(OutG) as a set, s; all i
and 0, for i > 0 are clear. The twisting function for B is induced by u from
that of T, (C,3) and hence from that of L(C, 3), which we denote by 1, and
is given in May [10, p. 102 (ii)]. It is not hard to see that

(7.1) 3w, b) = (aby) ™" (n, ("% u) + 3y w), 3y b)

where b = <{b;,...,b,), a: OutG — AutC is the natural homomorphism,
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and b": Aln] > K(OutG) is the simplicial map such that »(0,1,...,n) = b
(so that b*(u) € Z3(A[n]; C)).

We build E as a triply twisted cartesian product. As a set, E = K(G) X B
= K(G) X K(C,2) x K(OutG). The maps i:K(G)—E, p:E— B,
s; for all i, and 9, for i > 0 are all clear.

7.2. Define 3y in E by dg(a,w,b) = (1(b)(o(w) + dga),dy(w,b)). Here,
dg(w, b) is as in 7.1, o is the twisting function for the fibration K(C) — L(C,2)
> K(C,2), +: K(C) X K(G) = K(G) is induced by multiplication C X G
— G, and 7(b) () is essentially the same 7 given by (6.3) except that the g and
¢’ are replaced with the f and v of 4.4.

It will now follow that p is a Kan fibration and that E is a Kan complex.
Verifying the relation 930, = 939, is a little involved and is exactly where
(4.2) is needed. One step is to observe for 3-simplices (0,1,2,/) € An],
b'(0,1,2,5) = <{by,by,bs,...,b;), so that

bl*(u)(o’ ],2,_]) = u<bl’b2’b3 o bj> = U[bl |b2|b3 o bj] by 5.1
= k(by,by,by -+ b)) by 43,

Remaining details are left to the reader.
PrROOF OF 3.1.3. Immediate by the construction.

PrOOF OF 3.1.1. By construction, m(B) = OutG, m(B) = C, and 7(B)
= 0 otherwise. Using the construction of E, it is easy to construct a map of
fibrations from # to p such that K(C) — K(G) and K(C,2) — B are both the
natural inclusions. Naturality now yields that 9: m(B) — m(K(G)) is the
inclusion C — G.

The extension In G -5 Aut G -% Out G induces a ¢: Out G — Out (InG).
From diagram (4.1) we get the following diagram

J
G — AutG-\q—:’/OutG
8 pd
79
7

0 —~ c -

— 1

(7.3) i p

S Y
Out’G x Out G \

where v and f are given in 4.4. Let ¢’ = Bv and g = p’f, and construct the Kan
fibration K(InG) — K(AutG,1) - K(OutG) as in §6. From the explicit
twisting functions given, we get a map of fibrations

-
Aut(In G) —  Out(In G)

14

K(G) i E - B
| | l
K(In G) - K(Aut G, 1) - K(Out G)

Using the induced map of homotopy sequences and the fact that (p’),
= p’ on 7, the rest of 3.1.1 follows.

Proor oF 3.1.2. Let S! = A[1]/{(0),(1)} and identify the 1-cell [a] € K(G)
with the map S' — K(G) generated by (0,1) — [a]. Then the isomorphism
G = m(K(G), *) (* = [1] = the only O-cell) is induced by a < [a]. Simi-
larly for K(OutG) and for B = K(C,2) X, K(OutG). Pick a € G and b
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€ OutG. To prove 3.1.2, it is sufficient to find a homotopy S' x I — E which
starts with ([a], *, *), ends with ([b~'{a}], *, *) and which lies over (,[67"])
€ B. Using May [10, 5.1 and 6.2, it is sufficient to exhibit two 2-cells of E
which match up along a common boundary and which satisfy the conditions
indicated in the diagram

3 ([b{a}], *, %) 2
(*, % [b7']) *, % [67'])
0 (lal, * *) :

Letting (0, 1, 2> = ([ail], =, [11b”"]) and (0, 2, 3) = ([1]a], *, [ }|1]) (note that
9p<€0,2,3) = ((6>~1)""{a}], *,[1])) completes the proof.
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