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A GEOMETRIC INTERPRETATION OF A
CLASSICAL

GROUP COHOMOLOGY OBSTRUCTION

R. O. HILL, JR.

Abstract. For a non-Abelian group G, we show that the obstruction to the

existence of an extension of G by n that induces <f>: II -» Out G is also the

zc-invariant of the classifying space for KiG, l)-bundles.

1. In the classical theory of group extensions, there arises a group cohomol-

ogy obstruction. This paper studies some topological implications of that

obstruction, giving it a geometric interpretation and augmenting the classifica-

tion of fibrations by J. Siegal [15], [16] with the case the fiber is a K(G, 1), G

not Abelian.

If 1 -> G -* E —> n —> 1 is an extension of the group G by the group IT, it

induces either an action <p: TI —> AutG, if G is Abelian, or a "semiaction"

d>: n —> Out G = Aut G/ln G, otherwise. See [9, p. 124]. Given G not Abelian

and a <p: n —> Out G, there need not exist an extension inducing d>. Indeed, let

C be the center of G and a: OutG—> AutC be induced by restriction

Aut G -> Aut C. By [4] or [9, p. 128] we have

Theorem A. There is an obstruction k G T/A(ri; C) to the existence of an

extension of G by W which induces <f>. If k = 0, the set of all equivalence classes

of all such extensions is in a 1-1 correspondence with H2AU; C).

In §4 this obstruction is given in detail, and we prove the following, which

shows this obstruction has a "universal example."

Theorem B. Let U G TTa3(Out G;C) be the obstruction to the existence of

an extension of G by Out G which induces id: Out G —> Out G. Then for any

<p: n —* Out G, <j>*(U) is the obstruction k of Theorem A.

Recall, even though K(G, 1) is not an TT-space (for G not Abelian), there is

a universal classifying fibration K(G, 1) —* E -^ B. By Gottlieb [6, p. 54],

trx(B) S OutG, tt2(B) s C and ^(B) = 0, otherwise. Thus B has a single

(twisted) zv-invariant in H3(K(OulG, 1);{G}) (where { } denotes local coeffi-

cients). We denote by $: TTa* (JI; C) -» TTa* (K(Tl, 1);{C}) the natural isomor-

phism (see [9, IV. 11]). The main result of this paper is

Theorem C. Let U be given by Theorem B. Then $((/) is the (twisted) k-

invariant for the universal classifying space for K(G, 1) bundles.

Theorem A has a natural geometric consequence. Given an extension

G -^ E -£+ n, we can construct a fibration K(G, 1) -*1* K(E, 1) -^ TC(n, 1)
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in which z* = i and/4 = P on the fundamental groups. In any fibration,

"dragging" the fiber around loops in the base (backwards) induces an action

of 77, (base) on 7r„(fiber), but only modulo the action of ttx on irn. Thus, the

fibration p' induces a geometric "semiaction" ttx (base) -* Out (ttx (fiber)) in

addition to the algebraic one.

Theorem D.    These two "semiactions" are the same.

This may be proven by extending either the proof of Theorem 1(a) in [7] or

[14, pp. 86-88]
Using <J> we therefore easily get as a corollary of Theorem A:

Theorem E.    Given a tb: II —» Out G, there is an obstruction

k G77^(7v(n,l);{C})

to the existence of a K(G, \)fibration over K(SA, 1) which induces tj>. If k = 0, the

set of all equivalence classes of such fibrations is in a 1-1 correspondence with

H^(K(U,l);{C}).

Although Theorem A gives a proof of this, it does not give any geometrical

insight to this geometric fact. Theorem C leads to a very satisfactory geometric

proof, which is given in §3.

The proof of Theorem C yields a complete description of p.

Theorem F. Let K(G, 1) -* E -^> B be the universal K(G, \)-fibration. Then

E is a 7C(Aut G, 1), its homotopy sequence reduces to the natural 0 —» C —» G

-> Aut G -> Out G -> 1, and the "semiaction" of ttx (base) on ttx (fiber) corre-

sponds to the identity: Out G —> Out G.

Theorems C and F follow from 3.1 and 3.2.

I would like to thank Professor William Massey who first posed to me the

problem of geometrically understanding Theorem A.

I understand recently that some of the above with somewhat different

proofs have been known to M. G. Barratt.

As a matter of convenience (see the second half of [3]), the remainder of this

paper is done in the category of semisimplicial complexes. The reader is

assumed to be familiar with May [10], as notation tends to be based on that

text.

2. We give a concise development of Lv(C,n) and its classifying properties.

For more details see [5], [8], [11], [12], [13], [15], [16], [17].
We will denote an Eilenberg-Mac Lane complex of type (C, n) by K(C, n),

its "universal class" in H"(K(C, n); C) by V and the universal principal "loop-

path" fibration by K(C,n - 1) -» L(C,n) -A K(C,n). Let W(T1) denote the

standard free acyclic semisimplicial complex corresponding to the group n. If

n acts on C via tb: IT -» AutC, then n acts on both K(C,n) and L(C,n)

naturally. Using the diagonal action, we denote W(H) X K(C,n)/Yl by

L„(C,n) and W(U) X L(C,n)/U by T„(C,n), and obtain from P a Kan

fibration K(C,n - 1) -» T„{C,n) -** L„(C,n). (The inclusion of W(Tl) X

* into W(U) X K(C,n) induces a natural 7C(n, 1) contained in LV(C,«).)
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Theorem 2.1. Let n > 2. (1) WjiLv(C,n)) is IT, if i = 1; C, // i = n; 0,

otherwise; and the action of irx on -nn is <p.

(2) There is a universal class v G T/^(Lff(C, n), {C}), where this denotes

cohomology with local coefficients twisted by <p. If X is a semisimplicial complex,

then f <h> /* (v) is a 1-1 correspondence between the set of based homotopy classes

of maps from X into Lv(C,n) which induce

R: TTX(X)^-nx(Lv(C,n))   and   H^(X;{C)).

(3) A map f: X —* Lv(C,n) lifts if and only if f*(v) = 0 if and only if f is
homotopic rel base point to a map whose image is in K(U, 1). Iff*(v) = 0, the

set of homotopy classes of such liftings is in 1-1 correspondence with

H^X(X;{C)).

Parts (1) and (2) are proved by Gitler [5], and part (3) is essentially proven

in Nussbaum [11], [12] and Siegel [16].

The space LAutC(C, n) is understood to have the natural action of irx on trn.

Suppose a Kan complex has two nonzero homotopy groups, trx(X) = II,

ir„iX) = C, and ttx acts on trn(X) with <j>: Ti -* AutC. Then X can be

constructed, up to homotopy, as the pullback from the fibration p by a map

/: K(n, 1) -> LAuiC(C,n + 1) = L such that <?>=/*: wx(X) -» irx(L).
Definition. The element f*(v) G H£+x(K(Tl,l);{C}) is the (twisted) k-

invariant of X.

As a simple illustration, we observe

Proposition 2.2. Let n > 2. The complex X is a L„(C,n) if and only if its

twisted k-invariant is 0.

Proof. Exercise. See Olum [13] or Robinson [17]. The case n = 1 is treated
in [7].

Corollary 2.3. The universal classifying space for K(G, 1) bundles is a

L0utG(C, 2) iff the universal example U = 0.

3. We prove Theorems C and F and give a geometric proof of Theorem E.

Let AK(G, 1) be the semisimplicial group complex of all automorphisms of

K(G, 1) and let AK(G, 1) -> W -A BAK(G, 1) = B be its universal principal
fibration. Then the associated K(G, 1) bundle

AK(G, 1) XAK(GX) K(G, 1) -» WXAK{GX) K(G, 1) -> B

is the universal K(G, 1) fibration K(G, \)-> T-^ B. Compare with [1, 5.6]. By

Gottlieb [6], vrfB) is Out G, if i = 1; C, if i = 2; and 0, otherwise (where C is
the center of G). Essentially, since the homomorphism induced on the

fundamental groups by the map AK(G, 1) X K(G, 1) -» K(G, 1) is addition

C X G -^> G, the homomorphism 9: tr2 —» irx in the homotopy sequence for q

"is" the inclusion of C into G. Thus Tis a K( , 1) and the homotopy sequence

for q reduces to 0 -» C -> G -» w, (£) -» Out G -> 1. In §7 we will prove the

following:
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Theorem 3.1. There is a Kan fibration K(G,\) -*-» E -^* B with the proper-

ties:

1. 77ze long exact homotopy sequence for p is all zero except for 0 —* tt2(B)

-> 7r,(7C(G, 1)) -> ttx(E) -> 77,(75) -» 1, and this is 0 -» C -» G -> Aut G

-> Out G -> 1.

2. 7Vze "action" of ttx(B) on ttx(K(G, 1)) iWz/cfc is a homomorphism ttx(B)

-* Out G w ?zie identity.

3. 77ze twisted k-invariant for B is u = $>(U), as described in Theorem C.

Since this is a fibration with fiber a 7C(G, 1), there is a map /: B

-* BAK(G, 1) which induces p.

Theorem 3.2. The map f is a homotopy equivalence, and the constructed

bundle is the universal bundle.

Theorems C and F easily follow from 3.1 and 3.2.

Proof of 3.2. Since actions of tt, (base) on the fiber are preserved under

pullbacks, it follows from (2) that the action in the universal fibration is also

the identity and that^,: ttx(B) -> ttx(BAK(G, 1)) is an isomorphism. The map

of long exact homotopy sequences induced by / now shows / induces an

isomorphism in homotopy groups.

Geometric proof of Theorem E. A homomorphism tb: Jl —> Out G induc-

es a map <£': K(U, 1) -> K(Out G, 1) and using §2 we get the following diagram

(where, as usual, we confuse the element u G H^(K(OutG, 1);{C}) and a

map u: K(OutG, 1) -» LAutC(C,3) such that u*(v) = u (given by 2.1.2)):

K(G, l)  - E

\p K(C, 2)

(3.3) K(C,2)   -      >-B -* rAu,c(C.3)

''' £ JC(0utG,l) " LAJC(C,3)
Mil,  I )

Let "the obstruction" be <J>'* (u). Then, as usual, the obstruction = 0 iff there

is a lifting tb" of tb' (by 2.1.3) iff there is a 7C(G, 1) fibration over K(H, 1) with

"induced" action tb (this last follows since p is the universal fibration, by using

pullbacks, and since tb = tb'*: 7r,(A'(n, 1)) —> ttx(B)). If the obstruction is zero,

i.e., if there is a 7<"(G, 1) bundle over 7<"(n, 1) with "action" tb, then

h£(K(H, 1); {C}) is in 1-1 correspondence with the set of homotopy classes of

liftings K(U, 1) -^ B of maps homotopic to </>' (by 2.1.3) which is the set of

homotopy classes of maps A/n, 1) —» B which induce the homomorphism

tb: 77] (7^(11,1)) —> ttx(B), which in turn is in 1-1 correspondence with the

equivalence classes of K(G, 1) fibrations over A"(n, 1) with "action" tb.

4. We briefly recall the basic algebra we need.

The bar construction on H,{Bn,dn), is a differential graded n-module,

where Bn is the free Abelian group generated by all symbols of the form

*o[*i I • •' l*J> where x, G II and x, ^ 1 if i > 1. See [9, pp. 114, 189]. If the
Abelian   group   C   is   a   II-module   by   y: II-> Aut C,   then   get



A CLASSICAL GROUP COHOMOLOGY OBSTRUCTION 409

d*: Homz{n)(Bn_x,C) ^ nomz{n)(Bn,C)

and define TTy"(Tc-; C) = ker a*+1/im3* .

Let G be a group, C its center and a: Out G -> Aut C the natural homomor-

phism. Let d>: II -> Out G be a homomorphism. Consider the diagram

In G ,      - n

0    _♦      C     -. G     -L      Aut G 4 Out G —> 1

where p and // are the quotient homomorphisms, i and /' are the inclusions,

and j = i'p' so that the row is exact. For each x G IT, pick <p'(x)

G AutG so that pep' = d> (§' is just a function!) but pick d>'(l) = 1. Since

p[<l>'(x)<p'(y)<p'(xy)~l] = 1, for each (x,y) G II X II we can pick g(x,y) G G

such that d>'(x)tf>'(.y) = jg(x,y)<p'(xy), but pick g(\,y) = 1 = g(x, 1). The

associative law in AutG gives jW(x){g(y,z)}g(x,yz)\ = j\g(x,y)gixy,z)] so

that for each x, y, z G II there is a Kix,y, z) G C such that

(4.2) <p'(x){g(y,z)}g(xy,z) = iK(x,y,z)g(x,y)gixy,z).

Let c G Homz/n)(Ti3(n), C) be given by

(4.3) c(x0[x,|x2|x3]) = [a<p(x0)}K(x,y,z).

Then by Eilenberg and Mac Lane [4] (or see [9, pp. 126-128]):

Theorem 4.4. The cochain c is a cocycle and its cohomology class [c]

G Ha(j>(YI; C) is independent of the two choices made in the construction of K.

There is an extension of G by II which induces d> // and only if {c} = 0.

Consider the special case II = Out G and d> = id. We denote by

.     , v: Out G -> Aut G,   /: OutG X OutG -> G,

k: Out G X Out G X Out G -> C

the functions constructed as above. We let [/G TTa3 (Out G;C) be the

corresponding cohomology class.

Theorem 4.6. This class U G H3(Out G;C) is the universal example for

this obstruction. I.e., given tf>: II -» Out G, then <}>*(U) G T^(II;C) « the

obstruction to the existence of an extension of G by II which induces <p.

Proof. Simply let tj>' = v<j>, g = /(<p X <p), and /V = zt(<pXd>Xd)), verify

the relations, and use 4.4.

5. Description of the natural isomorphism <£. For a group IT, let K(Tl) be the

standard Eilenberg-Mac Lane semisimplicial complex which is a Kan complex

and is a TC(IT, 1). Its n-simplices are ordered n-tuples of elements of IT,

(ax,..., an) for n > 0, and a single 0-simplex { ). It has face and degeneracy

operators
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d0(ax,...,an) = (a2,...,an),    9„<a,,... ,a„) = <a,-,a„_i>,

9,<a,,...,a„> = {ax,...,a,ai+x,...,an),     0 < i < n,

Sj(ax,...,an) = <a,,...,a,, l,a,+1,...,a„>,      0 < / < n.

Let 7i(n) be the bar consturction on II (see §4), let C be a IT-module,

c: 7?„(II) —> C an equivariant cocycle so that {c} G 77^ (II; C).

Lemma 5.1. The canonical isomorphism <&: 77^* (II; C) -» 77^* (A/II); {C}) is

g/w>« rjy $({c})<a, ,...,«„> = c(l[a, | • • • |aj).

Proof. Extend the argument given in [7, §3].

6. A construction of a certain Kan fibration.  If a: II —> G is a group

homomorphism, then a': K(U) -* K(G) by a'(ax,... ,a„} = (aax,... ,aan}

is a simplicial map and a'* : ttx (K(H), O) ~* "i (X(G), <( )) is a.

Lemma 6.1. If 1 -> G -^ £ -A. n -^ 1 is exact, then p': K(E) -> A"(n) «

z2 Kan fibration with i': K(G) —* K(E) the inclusion of the fiber.

Proof. This is well known and is just a checking of the definitions.

We will need an explicit description of T = K(E) as a twisted cartesian

product K(G)XTK(H). The extension in 6.1 induces a homomorphism

0:11—> Out G. Following §4, pick a function <|>': II-» AutG such that

ptb' = tb, tb'(l) = 1. Since the obstruction is zero, we can pick a g: II X II

-> G such that k(x,y,z) = 0, all x, y, z G II (see [9, p. 127, 8.5]). Thus

(6-2) <b'(x){g(y,z)}g(x,yz) = g(x,y)g(xy,z)

(and g(x,\) = 1 = g(\,y)).  Then   T= K(G)xK(U)  as  a  set  with  the

definitions of z", p', s, for all i, and 9, for i > 0 obvious.

6.3. Define d0(a,b) = (T(b)d0a,d0b), where

(r(b)d0a), = tb'(bx)"' {g(bx ,b2--- Vi K*(*l .*2 '' ■ *,-)_1}.

for    i = 2.n,a = <«,,...,a„> G K(G)n, b = (bx,...,bn/ G 7C(n)„.
Easily, with details left to the reader, 7 is a semisimplicial complex and

K(G) —> T —> K(H) is the required Kan fibration. We note that the relation

909o = 909] is exactly where 6.2 is needed. (6.3 was obtained from p' by

working backwards. See [10, §19].)

7. Proof of 3.1. Let U be as in Theorem B and u = <L>(U) (see 5.1). Let

K(C, 2) —> B -^-> A/Out G) be the (pullback) twisted cartesian product with

(twisted) zt-invariant u (see 3.3). So B = K(C,2) X K(OulG) as a set, st all i

and 9, for / > 0 are clear. The twisting function for B is induced by u from

that of 7AutC(C, 3) and hence from that of L(C, 3), which we denote by tj and

is given in May [10, p. 102 (ii)]. It is not hard to see that

(7.1) d0(w,b) = (a(bxrX(rx(b'*u) + d0w),dob)

where b = (bx,... ,b„), a: OutG -» AutC is the natural homomorphism,
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and b': A[n] -> TC(OutG) is the simplicial map such that b'(0,1,... ,n) = b

(sothatz3'*(«) G Z3(A[n];C)).

We build £ as a triply twisted cartesian product. As a set, E = K(G) X B

= K(G) X K(C, 2) X K(Out G). The maps i: K(G) -» E, p: E -» B,
Sj for all i, and 3, for i > 0 are all clear.

7.2. Define 30 in E by d0(a,w,b) = (t(6)(ct(w) + 30a),90(w,&)). Here,

d0iw,b) is as in 7.1, a is the twisting function for the fibration K(C) —> L(C,2)

-** K(C,2), +: K(C) X K(G) -> K(G) is induced by multiplication CxG

-» G, and r(b) () is essentially the same t given by (6.3) except that the g and

d>' are replaced with the / and f of 4.4.

It will now follow that p is a Kan fibration and that is is a Kan complex.

Verifying the relation 3030 = 303. is a little involved and is exactly where

(4.2) is needed. One step is to observe for 3-simplices (0,1,2,j) G A[n],

b'(0,1,2,/) = (bx,b2,b3,.. .,bj), so that

V* (u)(0,1,2J) = u{bx ,b2,b3--- bj) = t/[z3, \b2 \b3 ■ • • &,]    by 5.1

= k(bx,b2,b3---bj)   by 43.

Remaining details are left to the reader.

Proof of 3.1.3. Immediate by the construction.

Proof of 3.1.1. By construction, irx(B) = OutG, tt2(B) = C, and 77,(Ti)

= 0 otherwise. Using the construction of E, it is easy to construct a map of

fibrations from tr top such that K(C) -» K(G) and Tv~(C,2) —> Ti are both the

natural inclusions. Naturality now yields that 3: 7r2(Ti) —» 77](K(G)) is the

inclusion C -» G.

The extension InG -^ AutG -^ OutG induces a <t>: OutG -* Out (InG).

From diagram (4.1) we get the following diagram

0 —*       C      -V^-G        -^ Aut G^___^____- Out G     -.      1

Out G x Out G~~ ^Aut(In G)   —.       Out(In G)

where iz and/are given in 4.4. Let d>' = Rv and g = p'f and construct the Kan

fibration TC(InG) -^ TC(AutG, 1) -> AT(OutG) as in §6. From the explicit

twisting functions given, we get a map of fibrations

A-(G) -» E % B

yt | |

AT(In G) — AT(Aut G, 1) - A^Out G)

Using the induced map of homotopy sequences and the fact that (/>')'*

= p' on 77j, the rest of 3.1.1 follows.

Proof of 3.1.2. Let Sx = A[l]/{(0),(1)} and identify the 1-cell [a] G K(G)

with the map Sx —> K(G) generated by (0,1) -> [a]. Then the isomorphism

G = 771 (K(G), *) (* = [1] = the only 0-cell) is induced by a <-> [a]. Simi-

larly   for   TC(OutG) and for B = K(C,2) Xp TC(OutG).   Pick   a G G and b
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G Out G. To prove 3.1.2, it is sufficient to find a homotopy S1 X 7 -> £ which

starts with ([a], *, *), ends with ([b~l{a}], *, *) and which lies over (*,[b~x])

G B. Using May [10, 5.1 and 6.2], it is sufficient to exhibit two 2-cells of E

which match up along a common boundary and which satisfy the conditions

indicated in the diagram

3_i[b{a}],*, *)_ 2

(*. *, lb'1]) ^^--~^~~~~~^ (*, *, [b-'])

° ([«],*, *) '

Letting (0, 1, 2> = ([a|l], *, [l\b~l ]) and <0, 2, 3) = ([l|a], *,[b~x\l}) (note that

90<0,2,3> = ([(b~x)  x{a)], *,[{])) completes the proof.
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