A GEOMETRIC INTERPRETATION OF A CLASSICAL GROUP COHOMOLOGY OBSTRUCTION

R. O. HILL, JR.

ABSTRACT. For a non-Abelian group G, we show that the obstruction to the existence of an extension of G by Π that induces $\phi \colon \Pi \to \operatorname{Out} G$ is also the k-invariant of the classifying space for K(G, 1)-bundles.

1. In the classical theory of group extensions, there arises a group cohomology obstruction. This paper studies some topological implications of that obstruction, giving it a geometric interpretation and augmenting the classification of fibrations by J. Siegal [15], [16] with the case the fiber is a K(G, 1), G not Abelian.

If $1 \to G \to E \to \Pi \to 1$ is an extension of the group G by the group Π , it induces either an action $\phi \colon \Pi \to \operatorname{Aut} G$, if G is Abelian, or a "semiaction" $\phi \colon \Pi \to \operatorname{Out} G = \operatorname{Aut} G/\operatorname{In} G$, otherwise. See [9, p. 124]. Given G not Abelian and a $\phi \colon \Pi \to \operatorname{Out} G$, there need not exist an extension inducing ϕ . Indeed, let G be the center of G and G: Out $G \to \operatorname{Aut} G$ be induced by restriction $\operatorname{Aut} G \to \operatorname{Aut} G$. By [4] or [9, p. 128] we have

THEOREM A. There is an obstruction $k \in H^3_{\alpha\phi}(\Pi; C)$ to the existence of an extension of G by Π which induces ϕ . If k = 0, the set of all equivalence classes of all such extensions is in a 1-1 correspondence with $H^2_{\alpha\phi}(\Pi; C)$.

In §4 this obstruction is given in detail, and we prove the following, which shows this obstruction has a "universal example."

THEOREM B. Let $U \in H^3_\alpha(\text{Out } G; C)$ be the obstruction to the existence of an extension of G by Out G which induces id: $\text{Out } G \to \text{Out } G$. Then for any $\phi \colon \Pi \to \text{Out } G$, $\phi^*(U)$ is the obstruction k of Theorem A.

Recall, even though K(G,1) is not an H-space (for G not Abelian), there is a universal classifying fibration $K(G,1) \to E \xrightarrow{p} B$. By Gottlieb [6, p. 54], $\pi_{\parallel}(B) \cong \operatorname{Out} G$, $\pi_{2}(B) \cong C$ and $\pi_{i}(B) = 0$, otherwise. Thus B has a single (twisted) k-invariant in $H^{3}(K(\operatorname{Out} G,1);\{G\})$ (where $\{\}$ denotes local coefficients). We denote by $\Phi: H^{*}_{\alpha\phi}(\Pi;C) \to H^{*}_{\alpha\phi}(K(\Pi,1);\{C\})$ the natural isomorphism (see [9, IV. 11]). The main result of this paper is

THEOREM C. Let U be given by Theorem B. Then $\Phi(U)$ is the (twisted) k-invariant for the universal classifying space for K(G, 1) bundles.

Theorem A has a natural geometric consequence. Given an extension $G \xrightarrow{i} E \xrightarrow{p} \Pi$, we can construct a fibration $K(G, 1) \xrightarrow{i'} K(E, 1) \xrightarrow{p'} K(\Pi, 1)$

Received by the editors November 1, 1974.

AMS (MOS) subject classifications (1970). Primary 55F15; Secondary 55G35, 18H10, 20F25.

in which $i'_* = i$ and $p'_* = p$ on the fundamental groups. In any fibration, "dragging" the fiber around loops in the base (backwards) induces an action of π_l (base) on π_n (fiber), but only modulo the action of π_l on π_n . Thus, the fibration p' induces a geometric "semiaction" π_l (base) \to Out (π_l (fiber)) in addition to the algebraic one.

THEOREM D. These two "semiactions" are the same.

This may be proven by extending either the proof of Theorem 1(a) in [7] or [14, pp. 86–88]

Using Φ we therefore easily get as a corollary of Theorem A:

THEOREM E. Given $a \phi: \Pi \to \text{Out } G$, there is an obstruction

$$k \in H^3_{\alpha\phi}(K(\Pi,1);\{C\})$$

to the existence of a K(G, 1)-fibration over $K(\Pi, 1)$ which induces ϕ . If k = 0, the set of all equivalence classes of such fibrations is in a 1-1 correspondence with $H^2_{ab}(K(\Pi, 1); \{C\})$.

Although Theorem A gives a proof of this, it does not give any geometrical insight to this geometric fact. Theorem C leads to a very satisfactory geometric proof, which is given in §3.

The proof of Theorem C yields a complete description of p.

THEOREM F. Let $K(G, 1) \to E \xrightarrow{p} B$ be the universal K(G, 1)-fibration. Then E is a $K(\operatorname{Aut} G, 1)$, its homotopy sequence reduces to the natural $0 \to C \to G$ $\to \operatorname{Aut} G \to \operatorname{Out} G \to 1$, and the "semiaction" of π_1 (base) on π_1 (fiber) corresponds to the identity: $\operatorname{Out} G \to \operatorname{Out} G$.

Theorems C and F follow from 3.1 and 3.2.

I would like to thank Professor William Massey who first posed to me the problem of geometrically understanding Theorem A.

I understand recently that some of the above with somewhat different proofs have been known to M. G. Barratt.

As a matter of convenience (see the second half of [3]), the remainder of this paper is done in the category of semisimplicial complexes. The reader is assumed to be familiar with May [10], as notation tends to be based on that text.

2. We give a concise development of $L_{\pi}(C, n)$ and its classifying properties. For more details see [5], [8], [11], [12], [13], [15], [16], [17].

We will denote an Eilenberg-Mac Lane complex of type (C, n) by K(C, n), its "universal class" in $H^n(K(C, n); C)$ by V and the universal principal "looppath" fibration by $K(C, n-1) \to L(C, n) \xrightarrow{P} K(C, n)$. Let $W(\Pi)$ denote the standard free acyclic semisimplicial complex corresponding to the group Π . If Π acts on C via $\phi: \Pi \to \operatorname{Aut} C$, then Π acts on both K(C, n) and L(C, n) naturally. Using the diagonal action, we denote $W(\Pi) \times K(C, n)/\Pi$ by $L_{\pi}(C, n)$ and $W(\Pi) \times L(C, n)/\Pi$ by $T_{\pi}(C, n)$, and obtain from P a Kan fibration $K(C, n-1) \to T_{\pi}(C, n) \xrightarrow{P} L_{\pi}(C, n)$. (The inclusion of $W(\Pi) \times *$ into $W(\Pi) \times K(C, n)$ induces a natural $K(\Pi, 1)$ contained in $L_{\pi}(C, n)$.)

THEOREM 2.1. Let $n \geq 2$. (1) $\pi_i(L_{\pi}(C, n))$ is Π , if i = 1; C, if i = n; 0, otherwise; and the action of π_1 on π_n is ϕ .

(2) There is a universal class $v \in H^n_{\phi}(L_{\pi}(C,n),\{C\})$, where this denotes cohomology with local coefficients twisted by ϕ . If X is a semisimplicial complex, then $f \leftrightarrow f^*(v)$ is a 1-1 correspondence between the set of based homotopy classes of maps from X into $L_{\pi}(C,n)$ which induce

$$\beta \colon \pi_1(X) \to \pi_1(L_{\pi}(C,n))$$
 and $H^n_{\phi\beta}(X;\{C\})$.

(3) A map $f: X \to L_{\pi}(C, n)$ lifts if and only if $f^*(v) = 0$ if and only if f is homotopic rel base point to a map whose image is in $K(\Pi, 1)$. If $f^*(v) = 0$, the set of homotopy classes of such liftings is in 1-1 correspondence with $H_{6B}^{n-1}(X; \{C\})$.

Parts (1) and (2) are proved by Gitler [5], and part (3) is essentially proven in Nussbaum [11], [12] and Siegel [16].

The space $L_{\text{Aut}C}(C, n)$ is understood to have the natural action of π_1 on π_n . Suppose a Kan complex has two nonzero homotopy groups, $\pi_1(X) = \Pi$, $\pi_n(X) = C$, and π_1 acts on $\pi_n(X)$ with $\phi \colon \Pi \to \text{Aut } C$. Then X can be constructed, up to homotopy, as the pullback from the fibration p by a map $f \colon K(\Pi, 1) \to L_{\text{Aut } C}(C, n + 1) = L$ such that $\phi = f_* \colon \pi_1(X) \to \pi_1(L)$.

 $f: K(\Pi, 1) \to L_{\operatorname{Aut} C}(C, n+1) = L \text{ such that } \phi = f_*: \pi_1(X) \to \pi_1(L).$ Definition. The element $f^*(v) \in H^{n+1}_{\phi}(K(\Pi, 1); \{C\})$ is the (twisted) k-invariant of X.

As a simple illustration, we observe

PROPOSITION 2.2. Let $n \ge 2$. The complex X is a $L_{\pi}(C, n)$ if and only if its twisted k-invariant is 0.

PROOF. Exercise. See Olum [13] or Robinson [17]. The case n = 1 is treated in [7].

COROLLARY 2.3. The universal classifying space for K(G, 1) bundles is a $L_{\text{Out }G}(C, 2)$ iff the universal example U = 0.

3. We prove Theorems C and F and give a geometric proof of Theorem E. Let AK(G, 1) be the semisimplicial group complex of all automorphisms of K(G, 1) and let $AK(G, 1) \rightarrow W \xrightarrow{q'} BAK(G, 1) = B$ be its universal principal fibration. Then the associated K(G, 1) bundle

$$AK(G,1) \times_{AK(G,1)} K(G,1) \rightarrow W \times_{AK(G,1)} K(G,1) \rightarrow B$$

is the universal K(G,1) fibration $K(G,1) \to T \xrightarrow{q} B$. Compare with [1, 5.6]. By Gottlieb [6], $\pi_i(B)$ is Out G, if i=1; C, if i=2; and 0, otherwise (where C is the center of G). Essentially, since the homomorphism induced on the fundamental groups by the map $AK(G,1) \times K(G,1) \to K(G,1)$ is addition $C \times G \to G$, the homomorphism $\partial: \pi_2 \to \pi_1$ in the homotopy sequence for G is the inclusion of G into G. Thus G is a G into G into G into G. Thus G is a G in and the homotopy sequence for G reduces to G into G

THEOREM 3.1. There is a Kan fibration $K(G, 1) \xrightarrow{i} E \xrightarrow{p} B$ with the properties:

- 1. The long exact homotopy sequence for p is all zero except for $0 \to \pi_2(B) \to \pi_1(K(G,1)) \to \pi_1(E) \to \pi_1(B) \to 1$, and this is $0 \to C \to G \to \text{Aut } G \to \text{Out } G \to 1$.
- 2. The "action" of $\pi_1(B)$ on $\pi_1(K(G,1))$ which is a homomorphism $\pi_1(B)$ \rightarrow Out G is the identity.
 - 3. The twisted k-invariant for B is $u = \Phi(U)$, as described in Theorem C.

Since this is a fibration with fiber a K(G, 1), there is a map $f: B \to BAK(G, 1)$ which induces p.

THEOREM 3.2. The map f is a homotopy equivalence, and the constructed bundle is the universal bundle.

Theorems C and F easily follow from 3.1 and 3.2.

PROOF OF 3.2. Since actions of π_l (base) on the fiber are preserved under pullbacks, it follows from (2) that the action in the universal fibration is also the identity and that $f_*: \pi_l(B) \to \pi_l(BAK(G, 1))$ is an isomorphism. The map of long exact homotopy sequences induced by f now shows f induces an isomorphism in homotopy groups.

GEOMETRIC PROOF OF THEOREM E. A homomorphism $\phi \colon \Pi \to \operatorname{Out} G$ induces a map $\phi' \colon K(\Pi, 1) \to K(\operatorname{Out} G, 1)$ and using §2 we get the following diagram (where, as usual, we confuse the element $u \in H^3_{\phi}(K(\operatorname{Out} G, 1); \{C\})$ and a map $u \colon K(\operatorname{Out} G, 1) \to L_{\operatorname{Aut} C}(C, 3)$ such that $u^*(v) = u$ (given by 2.1.2)):

Let "the obstruction" be $\phi'^*(u)$. Then, as usual, the obstruction = 0 iff there is a lifting ϕ'' of ϕ' (by 2.1.3) iff there is a K(G,1) fibration over $K(\Pi,1)$ with "induced" action ϕ (this last follows since p is the universal fibration, by using pullbacks, and since $\phi = \phi_*^*: \pi_1(K(\Pi,1)) \to \pi_1(B)$). If the obstruction is zero, i.e., if there is a K(G,1) bundle over $K(\Pi,1)$ with "action" ϕ , then $H_{\phi}^2(K(\Pi,1);\{C\})$ is in 1-1 correspondence with the set of homotopy classes of liftings $K(\Pi,1) \to B$ of maps homotopic to ϕ' (by 2.1.3) which is the set of homotopy classes of maps $K(\Pi,1) \to B$ which induce the homomorphism $\phi: \pi_1(K(\Pi,1)) \to \pi_1(B)$, which in turn is in 1-1 correspondence with the equivalence classes of K(G,1) fibrations over $K(\Pi,1)$ with "action" ϕ .

4. We briefly recall the basic algebra we need.

The bar construction on Π , $\{B_n, \partial_n\}$, is a differential graded Π -module, where B_n is the free Abelian group generated by all symbols of the form $x_0[x_1|\cdots|x_n]$, where $x_i\in\Pi$ and $x_i\neq 1$ if $i\geq 1$. See [9, pp. 114, 189]. If the Abelian group C is a Π -module by $\gamma\colon\Pi\to\operatorname{Aut} C$, then get

$$\partial_n^*$$
: Hom $_{Z(\Pi)}(B_{n-1},C) \to \operatorname{Hom}_{Z(\Pi)}(B_n,C)$

and define $H_{\gamma}^{n}(K; C) = \ker \partial_{n+1}^{*}/\operatorname{im} \partial_{n}^{*}$.

Let G be a group, C its center and α : Out $G \to \operatorname{Aut} C$ the natural homomorphism. Let $\phi: \Pi \to \operatorname{Out} G$ be a homomorphism. Consider the diagram

where p and p' are the quotient homomorphisms, i and i' are the inclusions, and j = i'p' so that the row is exact. For each $x \in \Pi$, pick $\phi'(x) \in \operatorname{Aut} G$ so that $p\phi' = \phi$ (ϕ' is just a function!) but pick $\phi'(1) = 1$. Since $p[\phi'(x)\phi'(y)\phi'(xy)^{-1}] = 1$, for each $(x,y) \in \Pi \times \Pi$ we can pick $g(x,y) \in G$ such that $\phi'(x)\phi'(y) = jg(x,y)\phi'(xy)$, but pick g(1,y) = 1 = g(x,1). The associative law in $\operatorname{Aut} G$ gives $j[\phi'(x)\{g(y,z)\}g(x,yz)] = j[g(x,y)g(xy,z)]$ so that for each $x, y, z \in \Pi$ there is a $K(x,y,z) \in C$ such that

(4.2)
$$\phi'(x)\{g(y,z)\}g(xy,z) = iK(x,y,z)g(x,y)g(xy,z).$$

Let $c \in \operatorname{Hom}_{Z(\Pi)}(B_3(\Pi), C)$ be given by

(4.3)
$$c(x_0[x_1|x_2|x_3]) = \{\alpha\phi(x_0)\}K(x,y,z).$$

Then by Eilenberg and Mac Lane [4] (or see [9, pp. 126-128]):

THEOREM 4.4. The cochain c is a cocycle and its cohomology class $\{c\}$ $\in H^3_{\alpha\phi}(\Pi; C)$ is independent of the two choices made in the construction of K. There is an extension of G by Π which induces ϕ if and only if $\{c\} = 0$.

Consider the special case $\Pi = \text{Out } G$ and $\phi = \text{id.}$ We denote by

$$(4.5) v: \operatorname{Out} G \to \operatorname{Aut} G, \quad f: \operatorname{Out} G \times \operatorname{Out} G \to G, \\ k: \operatorname{Out} G \times \operatorname{Out} G \times \operatorname{Out} G \to C$$

the functions constructed as above. We let $U \in H^3_\alpha(\operatorname{Out} G; C)$ be the corresponding cohomology class.

THEOREM 4.6. This class $U \in H^3_\alpha(\text{Out } G; C)$ is the universal example for this obstruction. I.e., given $\phi \colon \Pi \to \text{Out } G$, then $\phi^*(U) \in H^3_{\alpha\phi}(\Pi; C)$ is the obstruction to the existence of an extension of G by Π which induces ϕ .

PROOF. Simply let $\phi' = v\phi$, $g = f(\phi \times \phi)$, and $K = k(\phi \times \phi \times \phi)$, verify the relations, and use 4.4.

5. Description of the natural isomorphism Φ . For a group Π , let $K(\Pi)$ be the standard Eilenberg-Mac Lane semisimplicial complex which is a Kan complex and is a $K(\Pi, 1)$. Its *n*-simplices are ordered *n*-tuples of elements of Π , $\langle a_1, \ldots, a_n \rangle$ for n > 0, and a single 0-simplex $\langle \cdot \rangle$. It has face and degeneracy operators

$$\partial_0 \langle a_1, \dots, a_n \rangle = \langle a_2, \dots, a_n \rangle, \quad \partial_n \langle a_1, \dots, a_n \rangle = \langle a_1, \dots, a_{n-1} \rangle,
\partial_i \langle a_1, \dots, a_n \rangle = \langle a_1, \dots, a_i a_{i+1}, \dots, a_n \rangle, \quad 0 < i < n,
s_i \langle a_1, \dots, a_n \rangle = \langle a_1, \dots, a_i, 1, a_{i+1}, \dots, a_n \rangle, \quad 0 \le i \le n.$$

Let $B(\Pi)$ be the bar consturction on Π (see §4), let C be a Π -module, $c: B_n(\Pi) \to C$ an equivariant cocycle so that $\{c\} \in H^n_{\phi}(\Pi; C)$.

LEMMA 5.1. The canonical isomorphism $\Phi: H_{\phi}^*(\Pi; C) \to H_{\phi}^*(K(\Pi); \{C\})$ is given by $\Phi(\{c\})\langle a_1, \ldots, a_n \rangle = c(1[a_1|\cdots|a_n]).$

PROOF. Extend the argument given in [7, §3].

6. A construction of a certain Kan fibration. If $\alpha: \Pi \to G$ is a group homomorphism, then $\alpha' \colon K(\Pi) \to K(G)$ by $\alpha' \langle a_1, \ldots, a_n \rangle = \langle \alpha a_1, \ldots, \alpha a_n \rangle$ is a simplicial map and $\alpha'_* \colon \pi_1(K(\Pi), \langle \rangle) \to \pi_1(K(G), \langle \rangle)$ is α .

LEMMA 6.1. If $1 \to G \xrightarrow{i} E \xrightarrow{p} \Pi \to 1$ is exact, then $p' \colon K(E) \to K(\Pi)$ is a Kan fibration with $i' \colon K(G) \to K(E)$ the inclusion of the fiber.

PROOF. This is well known and is just a checking of the definitions.

We will need an explicit description of T = K(E) as a twisted cartesian product $K(G) \times_{\tau} K(\Pi)$. The extension in 6.1 induces a homomorphism $\phi \colon \Pi \to \text{Out } G$. Following §4, pick a function $\phi' \colon \Pi \to \text{Aut } G$ such that $p\phi' = \phi$, $\phi'(1) = 1$. Since the obstruction is zero, we can pick a $g \colon \Pi \times \Pi \to G$ such that k(x, y, z) = 0, all $x, y, z \in \Pi$ (see [9, p. 127, 8.5]). Thus

(6.2)
$$\phi'(x)\{g(y,z)\}g(x,yz) = g(x,y)g(xy,z)$$

(and g(x, 1) = 1 = g(1, y)). Then $T = K(G) \times K(\Pi)$ as a set with the definitions of i', p', s_i for all i, and ∂_i for i > 0 obvious.

6.3. Define $\partial_0(a,b) = (\tau(b)\partial_0 a, \partial_0 b)$, where

$$(\tau(b)\partial_0 a)_i = \phi'(b_1)^{-1} \{ g(b_1, b_2 \cdots b_{i-1}) a_i g(b_1, b_2 \cdots b_i)^{-1} \},$$

for $i=2,\ldots,n$, $a=\langle a_1,\ldots,a_n\rangle\in K(G)_n$, $b=\langle b_1,\ldots,b_n\rangle\in K(\Pi)_n$. Easily, with details left to the reader, T is a semisimplicial complex and $K(G)\to T\to K(\Pi)$ is the required Kan fibration. We note that the relation $\partial_0\partial_0=\partial_0\partial_1$ is exactly where 6.2 is needed. (6.3 was obtained from p' by working backwards. See [10, §19].)

7. **Proof of 3.1.** Let U be as in Theorem B and $u = \Phi(U)$ (see 5.1). Let $K(C,2) \to B \xrightarrow{q} K(\text{Out } G)$ be the (pullback) twisted cartesian product with (twisted) k-invariant u (see 3.3). So $B = K(C,2) \times K(\text{Out } G)$ as a set, s_i all i and ∂_i for i > 0 are clear. The twisting function for B is induced by u from that of $T_{\text{Aut } C}(C,3)$ and hence from that of L(C,3), which we denote by τ_1 and is given in May [10, p. 102 (ii)]. It is not hard to see that

(7.1)
$$\partial_0(w,b) = (\alpha(b_1)^{-1}(\tau_1(b'^*u) + \partial_0 w), \partial_0 b)$$

where $b = \langle b_1, \dots, b_n \rangle$, α : Out $G \to \operatorname{Aut} C$ is the natural homomorphism,

and $b': \Delta[n] \to K(\text{Out } G)$ is the simplicial map such that b'(0, 1, ..., n) = b (so that $b'^*(u) \in Z^3(\Delta[n]; C)$).

We build E as a triply twisted cartesian product. As a set, $E = K(G) \times B$ = $K(G) \times K(C,2) \times K(\text{Out } G)$. The maps $i: K(G) \to E$, $p: E \to B$, s_i for all i, and θ_i for i > 0 are all clear.

7.2. Define ∂_0 in E by $\partial_0(a, w, b) = (\tau(b)(\sigma(w) + \partial_0 a), \partial_0(w, b))$. Here, $\partial_0(w, b)$ is as in 7.1, σ is the twisting function for the fibration $K(C) \to L(C, 2)$ $\xrightarrow{\pi} K(C, 2), +: K(C) \times K(G) \to K(G)$ is induced by multiplication $C \times G \to G$, and $\tau(b)$ () is essentially the same τ given by (6.3) except that the g and ϕ' are replaced with the f and v of 4.4.

It will now follow that p is a Kan fibration and that E is a Kan complex. Verifying the relation $\partial_0 \partial_0 = \partial_0 \partial_1$ is a little involved and is exactly where (4.2) is needed. One step is to observe for 3-simplices $(0, 1, 2, j) \in \Delta[n]$, $b'(0, 1, 2, j) = \langle b_1, b_2, b_3, \dots, b_i \rangle$, so that

$$b'^*(u)(0,1,2,j) = u\langle b_1, b_2, b_3 \cdots b_j \rangle = U[b_1|b_2|b_3 \cdots b_j]$$
 by 5.1
= $k(b_1, b_2, b_3 \cdots b_j)$ by 4.3.

Remaining details are left to the reader.

PROOF OF 3.1.3. Immediate by the construction.

PROOF OF 3.1.1. By construction, $\pi_1(B) = \operatorname{Out} G$, $\pi_2(B) = C$, and $\pi_i(B) = 0$ otherwise. Using the construction of E, it is easy to construct a map of fibrations from π to p such that $K(C) \to K(G)$ and $K(C,2) \to B$ are both the natural inclusions. Naturality now yields that $\partial: \pi_2(B) \to \pi_1(K(G))$ is the inclusion $C \to G$.

The extension In $G \xrightarrow{i'}$ Aut $G \xrightarrow{q}$ Out G induces a ϕ : Out $G \to$ Out (In G). From diagram (4.1) we get the following diagram

where ν and f are given in 4.4. Let $\phi' = \beta \nu$ and g = p'f, and construct the Kan fibration $K(\operatorname{In} G) \to K(\operatorname{Aut} G, 1) \to K(\operatorname{Out} G)$ as in §6. From the explicit twisting functions given, we get a map of fibrations

$$\begin{array}{ccccc} K(G) & \rightarrow & E & \stackrel{p}{\rightarrow} & B \\ & \downarrow (p')' & & \downarrow & & \downarrow \\ K(\operatorname{In} G) & \rightarrow & K(\operatorname{Aut} G, 1) & \rightarrow & K(\operatorname{Out} G) \end{array}$$

Using the induced map of homotopy sequences and the fact that $(p')'_*$ = p' on π_1 , the rest of 3.1.1 follows.

PROOF OF 3.1.2. Let $S^1 = \Delta[1]/\{(0),(1)\}$ and identify the 1-cell $[a] \in K(G)$ with the map $S^1 \to K(G)$ generated by $(0,1) \to [a]$. Then the isomorphism $G \cong \pi_1(K(G), *)$ (* = [1] = the only 0-cell) is induced by $a \leftrightarrow [a]$. Similarly for K(Out G) and for $B = K(C, 2) \times_{\rho} K(\text{Out } G)$. Pick $a \in G$ and b

 \in Out G. To prove 3.1.2, it is sufficient to find a homotopy $S^1 \times I \to E$ which starts with ([a], *, *), ends with ($[b^{-1}\{a\}]$, *, *) and which lies over (*, $[b^{-1}]$) \in B. Using May [10, 5.1 and 6.2], it is sufficient to exhibit two 2-cells of E which match up along a common boundary and which satisfy the conditions indicated in the diagram

Letting $\langle 0, 1, 2 \rangle = ([a|1], *, [1|b^{-1}])$ and $\langle 0, 2, 3 \rangle = ([1|a], *, [b^{-1}|1])$ (note that $\partial_0 \langle 0, 2, 3 \rangle = ([(b^{-1})^{-1}\{a\}], *, [1])$) completes the proof.

BIBLIOGRAPHY

- 1. M. G. Barratt, V. K. A. M. Gugenheim and J. C. Moore, *On semisimplicial fibre-bundles*, Amer. J. Math. 81 (1959), 639-657. MR 22 #1895.
- 2. A. Bousfield and D. M. Kan, *Homotopy limits, completions, and localizations*, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
- 3. S. Eilenberg, *Homology of spaces with operators*. I, Trans. Amer. Math. Soc. **61** (1947), 378–417; errata, ibid. **62** (1947), 548. MR **9**, 52.
- **4.** S. Eilenberg and S. Mac Lane, *Cohomology theory in abstract groups*. I, II, Ann. of Math. (2) **48** (1947), 51–78, 326–341. MR **8**, 367; **9**, 7.
- 5. S. Gitler, Cohomology operations with local coefficients, Amer. J. Math. 85 (1963), 156-188. MR 28 #1621.
- **6.** D. H. Gottlieb, On fibre spaces and the evaluation map, Ann. of Math. (2) **87** (1968), 42-55; correction, ibid. (2) **91** (1970), 640-642. MR **36** #4560; **41** #7684.
- 7. R. O. Hill, Jr., On characteristic classes of groups and bundles of $K(\Pi, 1)$'s, Proc. Amer. Math. Soc. 40 (1973), 597-603. MR 47 #7737.
- 8. J. F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17. MR 45 #6002.
- 9. S. Mac Lane, *Homology*, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- 10. J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 36 #5942.
 - 11. F. Nussbaum, Thesis, Northwestern University, 1970.
 - 12. —, Semi-principal bundles and stable nonorientable obstruction theory (to appear).
- 13. P. Olum, On mappings into spaces in which certain homotopy groups vanish, Ann. of Math. (2) 57 (1953), 561-574. MR 14, 895.
- 14. —, Factorizations and induced homomorphisms, Advances in Math. 3 (1969), 72–100. MR 38 #6590.
- 15. J. Siegal, Higher order cohomology operations in local coefficient theory, Amer. J. Math. 89 (1967), 909-931. MR 37 #913.
- 16. —, k-invariants in local coefficient theory, Proc. Amer. Math. Soc 29 (1971), 169-174. MR 46 #6344.
- 17. C. Robinson, Moore-Postnikov systems for non-simple fibrations, Illinois J. Math. 16 (1972), 234-242.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824