PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 54, January 1976

EMBEDDING CONTRACTIBLE 2-COMPLEXES
IN E*

BENJAMIN M. FREED!

ABSTRACT. If L is any figure eight complex or any complex of type (1,1,1),
then there are infinitely many different embeddings of L in E*.

1. Introduction. By generalizing Mazur’s embedding of the dunce hat in S*
(refer to [5]), Glaser [2] has constructed infinitely many different contractible
2-complexes each embedded piecewise linearly in S* so as to have nonsimply
connected complements. Neuzil [4] has constructed an embedding of the
dunce hat in S* with nonsimply connected complement.

In this paper, we extend Neuzil’s result to complexes of type (1,1,1) and do
the same for figure eight complexes. Moreover, if L is any one of these
complexes, then there are infinitely many distinct embeddings of L in E%.

The author would like to thank the referee for his many helpful suggestions.

2. Definitions and notation. A figure eight complex with sewing words
o’ B°, & B" is a contractible 2-complex obtained by attaching two disks D,, D,
to a figure eight a vV B by the formula o’ 8°, a™ 8", respectively, where r, s, m,
n are positive integers such that rn — sm = =1. This last condition guarantees
contractibility.

A complex of type (1,1,1) with sewing word a“Da€®) ... a<(P) is a contrac-
tible 2- complex obtained by attaching a disk to a 01rcle a by the formula
a M) ... 4<(P) where (i) = +1 and >, ei) = =1. This last condition

guarantees contractlblhty. We note that the dunce hat is an example of a
complex of type (1,1,1) with sewing word a~'a'al.

By a knot group G presented in the usual manner
G={x,x,....x,Jn=r=--=5=1)

we mean the following: for a tame simple closed curve C in E? let
G = II,(E3 — C). We suppose the knot C has a presentation with respect to
which it is divided into n arcs by its undercrossing points, and that G is

generated by x;, X5, ..., x, where x; is represented by a simple closed curve

in E3 — C which encircles once the jth arc and passes under no other arc.
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If M is a manifold then Bd M and Int M will denote the boundary of M
and interior of M, respectively. We will use = to denote group isomorphism
and =~ to denote homeomorphism. By (m,n) = 1, we mean that the two
integers m and n are relatively prime.

3. Main results.

LEMMA . Suppose fis a map of X onto Y and A C X. If f|f =Y — f(A)) is
a homeomorphism then M(f) — M(f|A) is homotopically equivalent to X — A.

The proof is by deformation retraction along the fibers of the mapping
cylinder.
The first theorem is just a generalization of Neuzil’s result in [4].

THEOREM 1. Suppose G is a knot group and G is presented in the usual
manner:

G={x,x....%,n=r=-=1p =1}

If L is a complex of type (1,1,1) with sewing word a‘(”a‘(z) o aP) then for any
p-tuple of integers i(1), i(2), ..., i( p) between | and n, there is an embedding of
L in E* such that TI,(E* — L) is presented by

dl) @) dp) _
LXimXi@) Xy = U

= G/t ) i)

{xlvxz ..... xn|rl =p=-=p =

Proor. Let G = II, (E3 = C), where Cis a tame simple closed curve in E3.
Let K be an unknotted polyhedral simple closed curve in E° — C such that K
is in the equivalence class represented by the word xff}{xfgg . ‘xf}}‘,’{ in the
given presentation of G where €(i) = +1 and X7_, e(i) = *1. We choose K
so that K bounds a tame disk 4 in E3 such that A N C is exactly p interior
points of A4.

Let T be a solid 3-dimensional torus in E3. We write T = S' X D2, Let h
be a homeomorphism of E? onto itself which maps C into Int 7 and maps A4
onto a meridional disk of T. Divide S! into two arcs J and  such that

(b x D% (L x D*) N A(C)) = (b X DX L X {y.yye- - 5p)),

where y|, y,, ..., y, are distinct points in Int D?. By putting an orientation on
L, we can pick K and 4 and orient C so that the induced orientation on I, X y;
is+ife(i) = +1and —if e(i) = —1.

Let B be a polyhedral 3-cell in E? containing T in its interior. Let f be a
piecewise linear map of B? onto itself which leaves Bd B> pointwise fixed, is a
homeomorphism on B> — T, shrinks I, X D? to a point, and maps & X D? to
the center core S! % 0 of S! x D% Then the mapping cylinder of f, M;, is
homeomorphic to B3 x[0,1]. Let L' = M;., where f' = f|h(C). Then (B3
x[0,1, L") n (E3x{1}) = (B*,h(C)) if 0<:r<1 and (B>x][0,1],L")
N (E3x{1}) ~ (B*,S"). By the Lemma, (B3 x [0,1]) — L’ is homotopically
equivalent to B> — h(C).
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Let B) be a 3-ball in B> containing A(C) in its interior. Let g be a piecewise
linear map of B> onto itself which leaves Bd B® pointwise fixed, is a
homeomorphism on B* — B, and shrinks B, to a point. Then M, = B?
X [~1,0]. Let L” = M,,, where g’ = g|h(C). L" is azdisk and L=L U L”

is a complex of type (1,1,1) with sewing word aff}{aj&f ce af};’;.

(B3 < [-1,0, L") N (E3x{1})) =~ (B*,n(C)) if -1 <t<0

and

(B> x[-1,0],L") n (E3x{1}) ~ (B3, point).

Again by the Lemma, (B3 X [~1,0]) — L” is homotopically equivalent to
B?> — h(C). So (B*x[~1,1]) — L is homotopically equivalent to B> — h(C)
and applying Van Kampen’s theorem we have

€ € 2
I,(E* - L) = G/{x,-f};xi&g " -XFfﬁf}-

THEOREM 2. Suppose G| and G, are knot groups each presented in the usual
manner:

G, ={x;,x3,....,x,hn=n=---=p=1} and

Gy ={ .yl =5 =-=s;=1}L

Let L be a figure eight complex with sewing words o' B°, o' B". Then for any
(r + s)-tuple of integers i(1), ..., i(r), i(r + 1), ..., i(r + s) between I and a,
and for any (m + n)-tuple of integers j(1), ..., j(m), jim + 1), ..., j(m + n)
between 1 and c, there is an embedding of L in E* such that

M (E* = 1) = Gy * Gof (ki) = X)) Vo)

Xi(r+1) .o 'xi(r+s)yj(m+l) .. .),)i(m+n)}’

where the right side is the group obtained by adding the two relations
X. XY ey =1 and x. e X y; ey =1 to
e ey G K Ko e =
ProoF. Let G, = IT;(E® — C}) and G, = II,(E> — C,), where C,, C, are
two unlinked tame simple closed curves in E>. Let K| and K, be unknotted
polyhedral simple closed curves in E3 — (C; U C,), such that K, is in the
equivalence class represented by the word X1y X Y0) T Yiim) and K, is
in the equivalence class represented by the word x;, 1) * ** X; 4 ) Vigm+1) * "
Vimany M Gy ¥ Gy = [II(I:’3 — (C, VU (,)). We may choose K, and K, so that
they bound disjoint polyhedral disks A, and A4,, respectively, in £ 3, where 4, N
C,,A, NC,, A, NC,, A, NC, consist of exactly r, m, s and n points, respectively.
Let T be a solid two-holed 3-dimensional torus in E>, and let M, M,, M;,
and M, be the meridional disks of T as seen in Figure 1. These four disks
divide T into three cells W,, W, and W, (see Figure 1). Let h be a
homeomorphism of E3 onto itself which maps C; and C, into Int T and maps
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A; onto M, i = 1, 2. Furthermore, A is constructed so that (W, W, N (h(C,)
U h(C,))) is homeomorphic to ([0, 1] x D?,[0, 1] X F;), where D? is a disk and
F is a finite set, i = 1, 2. That is, we may assume no knotting or tangling of
h(Cy) and A(C,) occurs in W, or W,.

Let B? be a polyhedral 3-cell in E? containing 7 in its interior. Let f be a
piecewise linear map of B> onto itself which leaves Bd B> pointwise fixed, is a
homeomorphism on B3 — T, shrinks W to a point, and maps T — W onto the
center core (a figure eight) of 7. Then the mapping cylinder of f, M;
~ B> x[0,1]. Let L' = M., where f' = f|h(C;) U h(C,). Then

(B> [0,1], L") N (E*> x {1}) =~ (B}, h(C}) U h(Cy)) if 0 <1< 1,

and

(B*x[0,1,L") n (E3x{1}) ~ (B, figure eight).

By the Lemma, (B x [0,1]) — L’ is homotopically equivalent to B> — (h(C))
U h(Cy)).

Since A(C;) and h(C,) are unlinked, there exist disjoint 3-balls B, B, in B>
containing 4(C;) and A(C,), respectively. Let g be a piecewise linear map of
B? onto itself which leaves Bd B> pointwise fixed, is a homeomorphism on
B3 — (B, U B,), and shrinks B, and B, to points. Then M, ~ B3 X [-1,0].
Let L” = M,, where g’ = g|h(C;) U h(C;). L” is the union of two disjoint
disks and L = L’ U L” is a figure eight complex with sewing words a3,
a™ B,

(B3 X [=1.0], L") N (E3x {1}) ~ (B*,h(C}) U h(C,)) if =1 <1 <0,
and
(B3 < [~1.0LL") N (E*x {-1}) =~ (B*,{ p.q)).

Again by the Lemma, (B3 X [~1,0]) — L” is homotopically equivalent to
B3 — (h(C}) U h(Cy)). So (B* x [~1,1]) — L is homotopically equivalent to
B3 — (h(Cy) U h(C,)), and applying Van Kampen’s theorem we have

M(E? = L) = Gy * Gao/bxiqyy X))~ Yjm:

Xitr+1) """ Xir+9)Yi(m+1) T ’yj(m+n)}-

THEOREM 3. Suppose G is a knot group and G is presented in the usual
manner:

G:{XI,XZ,...,XaII‘l =n= ...='b= l}.

If L is any complex of type (1,1,1) with sewing word aMa®) . .. oa(P) o [ is any
figure eight complex with sewing words o” 3°, a™ 8", then for each triple of integers
i, j and k between | and a there exists an embedding of L in E* such that
I (E*— L) is presented by {x;,%3,....%,0n=r="-=pn=1
= x7 1 x;x).
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Proof for complexes of type ( l,l,l) with sewing word a“Va?) ... a<P)_Given
any three arbitrary generators x;, x;, and x; (not necessarily distinct) of G, we
claim that we can pick generators Xi(1)> Xi@2)» - - -5 Xi(p) Of G such that
xfé{gxfg; . -xffg; = x'x; i xg (O Xg X7 x; OF X; X4 X7 ) hen the conclusion
follows immediately from Theorem 1.

The proof is by induction on p, the length of the sewing word. The induction
begins with p = 3. In this case, L is just the dunce hat and the result was first
obtained in [4].

Suppose the result is true for all p’ such that 3 < p’ < p, and consider a
complex L of type (1,1,1) with sewing word af" ‘(2{ a®P), Let j be the
greatest integer such that e(j) has the opposite sign as €(p), (hence e(j + 1)

—e( ?) and consider the complex L’ of type (1,1,1) with sewing word
‘(') 2 aU=Dgeli+2) ... ye(p) . Given x;, Xjy Xgs there exist by induction on
ph—p— 2, generators Xi(1)s Xi()> =+ 0 Xi(j=1)r Xi(j42) -+ - Xi(p) of G such
that

- (1 2 e(j—1 2
G/{x " xi) = G/Axi{y)xa) - i) xS - X)),
Therefore, by Theorem 1, letting x; = x;,; = x, there exists an embedding of

L in E* such that

M (E* - L) = 6/(xi)xiy) - i) xVx D 1]) --- x50

1 2 e(j—1 2
= G/{x{)xB) XDl oy

= G/{x;! X)X}

Proof for figure eight complexes L with sewing words o' B°, o™ B". Let C be a
knot such that

M(E’ - C)=G ={x,x).....x,n =, =+ =p = 1).

Applying Theorem 2, where C; = C and C, is a trivial knot (that is;
IT,(E3 — C,) = Z = {z]| )), there exists an embedding of L in E4 such that

H] (E4 - L) = G * Z/{xi(l) .. 'xi(r)zm’xi(r+l) . -xi(r+s)z"}.

On the other hand if we take C) to be trivial and C; = C, then there exists an
embedding of L in E* such that

Hl (E4 - L) =7 * G/{z’(xi(l) v xi(m),Zin(m_'_l) R xi(m+n)}’
Hence it suffices to show that given positive integers r, s, m and n such that
rn — sm = *1 and three arbitrary generators (not necessarily distinct) x;,

and x; of G = II;(E> — C), either we can choose generators Xi(1ys Xi@)s -+ -
Xi(r+5) Of G s0 that

j"

G+ Z/{x(1) Xi(r) ¢ ’Xi(r-f-l) o 'Xi(r+s)zn} = G/{xi_lxjxk}

or we can choose generators x; i(1) Xi@)r ++ * Xi(m+n) of G so that
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Z G20y Ximy 2 Xi(ma 1) 7 Kimrn)) = G/{xi—]xjxk}'

Case 1: r = s (or m = n). If r = s (or m = n) it follows from the fact
rm—sm= %1 that r=s=1and n =m=1 (or that m = n =1 and
r = s = 1). Thus we must consider one of the following 4-tuples (r,s, m, n) of
integers (1, 1, mym + 1), (1, 1,m — I,m), (s + 1,s,1,1) or (s — 1,5, 1, 1). For the
first set of integers, we add the relations (1) zx” = 1 and (2) zx™"! x;x =1
to Z * G. By (1) we can eliminate z from the presentation (z = x; ™) and (2)
becomes x; ! x; i x; = 1. For the second set of integers, we add the two relations
X2y X and zx" ! to Z * G. For the third set we add the two relations
XX Xxi 1z =1 and xjz =1 to G * Z. For the fourth set we add the two
relations x; 71z = 1, xjxkxf'zz =1toG*Z.

Case 2: r < s(orr>s). We first note that if r <s(orr >s) then
m < n(orm > n). Forif r <sand m > n, then 1 = rn —sm < rn — sn
= (r — s)n < —1, a contradiction. Similarly, if r > s and m < n, then
+*l =rm—sm>rm—rm=r(n—m) > 1, a contradiction. So by Case I,
we can assume r < sand m < norr > sand m > n.

The proof is by induction on r + s + m + n, where either r < sand m < n
or r > s and m > n. The induction begins with the 4-tuple (r,s, m, n) being
either (1,2,1,3) or (2,1,3,1). For the first, we add the two relations zx; = 1 and.
22 x;x; ix, =1 to Z+ G, and for the second we add the two relations
22x x;x, = l and zx; = 1 to Z + G. Next we assume the theorem is true for
alltsuchthatr+s+m+n<tandeitherr<sandm<norr>sand
m > n.

Now we assume r + s + m +n = t and either r < sandm < norr >s
and m > n. We first suppose r < s and m < n. Then we have that (r,s, m, n)
is of the form (r,r + u,m,m + v), where u > 1 and v > 1. We observe that
rv — um = *1 (that is, (r,u,m,v) is of the desired form), because 1 = rn
—sm=rim+v)—@+um=rw—um Nowr+u+m+v<r+s+m
+n=tandeitherr =uorm=v,r <uandm < v,orr > uand m > v.
Hence it follows by Case 1 or the inductive hypothesis that the theorem is true

for the 4-tuple (r,u, m,v). Thus either (i) generators Xi(1)> Xi(@)> + -+ Xi(r+u) OF
G can be chosen so that

G * Z/{al Zm,b] ZU} = G/{x,—l ijk}
where a; = x;()x;q) *** X;(y and by = X, 1) Xi42) T Xi(r4up OF (ii) genera-
tOrS X;(1ys Xi(2)s + + +» Xi(mv) of G can be chosen so that

Z x G/{'ay,2"by} = G/{x] " x; %, }
where ay = x;()X;(2) Xy @0 By = Xy Xjma2) """ Xi(mto) I (i) is true
for (r,u,m, u) then for (r,s,m,n) = (r,r + uym,m + v) we add the two
relations ¢, z” = 1 and b, a; 2™’ = 1 to G * Z, which is the same as adding
the two relations a,z" = 1and bz = 1to G * Z. By (i), this is the same as

adding x; ' x; ixe = 1to G If (11) is true for (r,u, m,v), then for (r,r + u,m,m
+ v), we add the two relations z'a, = 1 and z"**a, b, = 1 to Z * G, which is
the same as adding z"a, = 1 and z¥b, = 1. By (ii), this is the same as adding

x,-"xjxk =1t G.
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Finally, we suppose r + s + m + n = t and r > s and m > n. Then we
have that (r,s,m,n) is of the form (s + f,s,n + g,n) where f > 1 and g > 1.
Since *1 =rm —sm = (s + f)n — s(n + g) = fn — sg, then (f,s,g,n) is of
the desired form. Also f+s+g+n <r+ s+ m+n =1 and either f = s
org=nf<sand g <n,or f>sand g > n. So by Case 1 or induction,
the theorem is true for (f,s, g, n). Thus we can choose generators of G so that
either

() G * Z/{ay28,b3 2"} = G/{x7 ' x;x),
where as = xi(l)xi(z) e ‘Xi(f) and b3 = xi(f+|)xi(f+2) e Xi(f+s)’ or

(i) Z * G/{z/ay,2°b4) = G/{x7" xx,),
where a4 = x;1yX;(5) - * X;(,) and by = x; X; ceeX; .

If (i’)4 is trllgle) f'c(>2r) (f,s, g,g r)z) then4 for égil,)f,;,(f;i) g, n),’(\fl::”)add the two
relations a3 by 2”8 = 1 and b3z" = 1 to G = Z. If (ii') is true then we add the
two relations z**/bya, = 1 and z°b, = 1to Z * G.

COROLLARY . If L is any figure eight with sewing words o’ B°, ™ B" or any
complex of type (1,1,1) with sewing word a®Va“®) ... %P then there exist
infinitely many distinct embeddings of L in E*.

PrOOF. By Theorem 3, it will suffice to show there exist infinitely many
distinct groups G2, such that by adding the appropriate relation x;” 'xjxk
= 1 to each one, we still obtain infinitely many distinct groups.

We start by considering a torus knot K, , where p and q are relatively prime
positive integers and p > ¢. IT,(E 3~ K,,ng has a presentation

H={a,a,....¢)lqca1 ) g0y = Q1 @iy agigk = 1,2,...,p)

(see [3, p. 155]). Setting x = gq ay---a, and y = aja, -+ -a, we get H'
= {x,y|x? = x9} where q; = x?0%)ycxdk k — 1 2 ... pandcandd are
integers such that c¢p + dg = 1 (see [3]). Letting p = 2g + 1, then cp + dg
= lis satisfied for c = 1 and d = —2. Then aq; = x2k=1) =2k By Theorem

3 there exists an embedding of L in E* such that
I(E* - L) = IL(E® - K,,)/{ai " ag114.2).

Under the presentation H' the relation a; = a a4, becomes

2

yx7t = x2qyx—2q—2x24+2 29—4 2g+2 2g9.,2

yx- or yx = x“1y°.

So I, (E* — L) is isomorphic to the group with the following presentation:
. 29+1 _ 242 _ 292
Gq_{x’ylxq —)’q,qu _qu }

The second relation may be written as yxx?9*! = x71x24+1),2 Hence, substi-
tuting y7 for x?9*! we get:

2g+1

Gy = {xp[x®* = 9 xypx = y?}.

Thus for each positive integer g > 2, there exists an embedding of L in E*
such that IT; (E* — L) is isomorphic to the group with presentation:

G, = {x. XM = 9, (xp)? = »?).
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Now let ¢ = 3/ (i > 1). By adding the relation y*> = 1, we obtain:

6i+1

G, = {xy[x%* =) = () = 1.

Bing (see [1, p. 35]) showed these groups have a nontrivial representation in
the symmetric group S,,,; by sending x — (1,2,3,. . . ,6i + 1) and y >
(6i+1,2,1)(6i,4,3) - (4 +2,4i,4i— 1)(4i + 1). Thus the groups G, forq =
3i are all nontrivial.

To complete the proof, it suffices to find infinitely many distinct groups of
the form Gq, g = 3i. To this end, we show that Gq, * G, for ¢ = 3i and

= 3/, where 6/ + | and 6/ + 1 are prime numbers with ¢’ > q.

By above, we have a nontrivial homomorphism of G, into S,,,. In order to
show G’ is distinct from Gq, we need only show there is no nontrivial
homomorphlsm of G, into S, .. Suppose otherwise, that is, that we have a
homomorphism y: G,» = S,,,;, where Y(x') =% and Yy) =y (%)
€ Sy;+1), and

roorlur2q q’ NAY ’
Gy = (¥ yIx2* =y (xy)" = y?).

Since ((2¢ + 1)' 2q’ +1) =1, ;here are integers b, ¢ such that b(2g + 1)!
+ t(Z? Since %2 = Y(x'2 ) = Yy'9) = p9, then £

2q+')'+’(2" +l) = 5! +1) (since the order of Sy, ., (2q + 1)) = jpe
Thus x and y commute. From this and the fact that y = (X9)°, we get

y = %% That and £9*! = ¢ imply £ = 1. Also y = #2 = 1. Thus ¢ is
trivial. Smce ¢ was arbitrary the conclusion follows.
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