# EMBEDDING CONTRACTIBLE 2-COMPLEXES IN $E^{4}$ <br> BENJAMIN M. FREED ${ }^{1}$ 

Abstract. If $L$ is any figure eight complex or any complex of type ( $1,1,1$ ), then there are infinitely many different embeddings of $L$ in $E^{4}$.

1. Introduction. By generalizing Mazur's embedding of the dunce hat in $S^{4}$ (refer to [5]), Glaser [2] has constructed infinitely many different contractible 2-complexes each embedded piecewise linearly in $S^{4}$ so as to have nonsimply connected complements. Neuzil [4] has constructed an embedding of the dunce hat in $S^{4}$ with nonsimply connected complement.

In this paper, we extend Neuzil's result to complexes of type ( $1,1,1$ ) and do the same for figure eight complexes. Moreover, if $L$ is any one of these complexes, then there are infinitely many distinct embeddings of $L$ in $E^{4}$.

The author would like to thank the referee for his many helpful suggestions.
2. Definitions and notation. A figure eight complex with sewing words $\alpha^{r} \beta^{s}, \alpha^{m} \beta^{n}$ is a contractible 2-complex obtained by attaching two disks $D_{1}, D_{2}$ to a figure eight $\alpha \vee \beta$ by the formula $\alpha^{r} \beta^{s}, \alpha^{m} \beta^{n}$, respectively, where $r, s, m$, $n$ are positive integers such that $r n-s m= \pm 1$. This last condition guarantees contractibility.

A complex of type ( $1,1,1$ ) with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$ is a contractible 2 -complex obtained by attaching a disk to a circle $\alpha$ by the formula $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$ where $\epsilon(i)= \pm 1$ and $\sum_{i=1}^{p} \epsilon(i)= \pm 1$. This last condition guarantees contractibility. We note that the dunce hat is an example of a complex of type ( $1,1,1$ ) with sewing word $\alpha^{-1} \alpha^{1} \alpha^{1}$.

By a knot group $G$ presented in the usual manner

$$
G=\left\{x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}=r_{2}=\cdots=r_{m}=1\right\}
$$

we mean the following: for a tame simple closed curve $C$ in $E^{3}$ let $G=\Pi_{1}\left(E^{3}-C\right)$. We suppose the knot $C$ has a presentation with respect to which it is divided into $n$ arcs by its undercrossing points, and that $G$ is generated by $x_{1}, x_{2}, \ldots, x_{n}$ where $x_{j}$ is represented by a simple closed curve in $E^{3}-C$ which encircles once the $j$ th arc and passes under no other arc.

[^0]If $M$ is a manifold then $\mathrm{Bd} M$ and $\operatorname{Int} M$ will denote the boundary of $M$ and interior of $M$, respectively. We will use $\cong$ to denote group isomorphism and $\approx$ to denote homeomorphism. By $(m, n)=1$, we mean that the two integers $m$ and $n$ are relatively prime.

## 3. Main results.

Lemma. Suppose $f$ is a map of $X$ onto $Y$ and $A \subseteq X$. If $f \mid f^{-1}(Y-f(A))$ is a homeomorphism then $M(f)-M(f \mid A)$ is homotopically equivalent to $X-A$.

The proof is by deformation retraction along the fibers of the mapping cylinder.

The first theorem is just a generalization of Neuzil's result in [4].
Theorem 1. Suppose $G$ is a knot group and $G$ is presented in the usual manner:

$$
G=\left\{x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}=r_{2}=\cdots=r_{m}=1\right\}
$$

If $L$ is a complex of type $(1,1,1)$ with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$, then for any p-tuple of integers $i(1), i(2), \ldots, i(p)$ between 1 and $n$, there is an embedding of $L$ in $E^{4}$ such that $\Pi_{1}\left(E^{4}-L\right)$ is presented by

$$
\begin{aligned}
\left\{x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}\right. & \left.=r_{2}=\cdots=r_{m}=1, x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(p)}^{\epsilon(p)}=1\right\} \\
& =G /\left\{x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(p)}^{\epsilon(p)}\right\} .
\end{aligned}
$$

Proof. Let $G=\Pi_{1}\left(E^{3}-C\right)$, where $C$ is a tame simple closed curve in $E^{3}$. Let $K$ be an unknotted polyhedral simple closed curve in $E^{3}-C$ such that $K$ is in the equivalence class represented by the word $x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(p)}^{\epsilon(p)}$ in the given presentation of $G$ where $\epsilon(i)= \pm 1$ and $\sum_{i=1}^{p} \epsilon(i)= \pm 1$. We choose $K$ so that $K$ bounds a tame disk $A$ in $E^{3}$ such that $A \cap C$ is exactly $p$ interior points of $A$.

Let $T$ be a solid 3-dimensional torus in $E^{3}$. We write $T=S^{1} \times D^{2}$. Let $h$ be a homeomorphism of $E^{3}$ onto itself which maps $C$ into Int $T$ and maps $A$ onto a meridional disk of $T$. Divide $S^{1}$ into two $\operatorname{arcs} I_{1}$ and $I_{2}$ such that

$$
\left(I_{2} \times D^{2},\left(I_{2} \times D^{2}\right) \cap h(C)\right) \approx\left(I_{2} \times D^{2}, I_{2} \times\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}\right)
$$

where $y_{1}, y_{2}, \ldots, y_{p}$ are distinct points in Int $D^{2}$. By putting an orientation on $I_{2}$, we can pick $K$ and $h$ and orient $C$ so that the induced orientation on $I_{2} \times y_{i}$ is + if $\epsilon(i)=+1$ and - if $\epsilon(i)=-1$.

Let $B^{3}$ be a polyhedral 3-cell in $E^{3}$ containing $T$ in its interior. Let $f$ be a piecewise linear map of $B^{3}$ onto itself which leaves $\mathrm{Bd} B^{3}$ pointwise fixed, is a homeomorphism on $B^{3}-T$, shrinks $I_{1} \times D^{2}$ to a point, and maps $I_{2} \times D^{2}$ to the center core $S^{1} \times 0$ of $S^{1} \times D^{2}$. Then the mapping cylinder of $f, M_{f}$, is homeomorphic to $B^{3} \times[0,1]$. Let $L^{\prime}=M_{f^{\prime}}$, where $f^{\prime}=f \mid h(C)$. Then ( $B^{3}$ $\left.\times[0,1], L^{\prime}\right) \cap\left(E^{3} \times\{t\}\right) \approx\left(B^{3}, h(C)\right) \quad$ if $\quad 0 \leq t<1$ and $\left(B^{3} \times[0,1], L^{\prime}\right)$ $\cap\left(E^{3} \times\{1\}\right) \approx\left(B^{3}, S^{1}\right)$. By the Lemma, $\left(B^{3} \times[0,1]\right)-L^{\prime}$ is homotopically equivalent to $B^{3}-h(C)$.

Let $B_{1}$ be a 3-ball in $B^{3}$ containing $h(C)$ in its interior. Let $g$ be a piecewise linear map of $B^{3}$ onto itself which leaves $\mathrm{Bd} B^{3}$ pointwise fixed, is a homeomorphism on $B^{3}-B_{1}$, and shrinks $B_{1}$ to a point. Then $M_{g} \approx B^{3}$ $\times[-1,0]$. Let $L^{\prime \prime}=M_{g^{\prime}}$, where $g^{\prime}=g \mid h(C) . L^{\prime \prime}$ is a disk and $L=L^{\prime} \cup L^{\prime \prime}$ is a complex of type $(1,1,1)$ with sewing word $\alpha_{i(1)}^{\epsilon(1)} \alpha_{i(2)}^{\epsilon(2)} \cdots \alpha_{i(p)}^{\epsilon(p)}$.

$$
\left(B^{3} \times[-1,0], L^{\prime \prime}\right) \cap\left(E^{3} \times\{t\}\right) \approx\left(B^{3}, h(C)\right) \quad \text { if }-1<t \leq 0
$$

and

$$
\left(B^{3} \times[-1,0], L^{\prime \prime}\right) \cap\left(E^{3} \times\{1\}\right) \approx\left(B^{3}, \text { point }\right)
$$

Again by the Lemma, $\left(B^{3} \times[-1,0]\right)-L^{\prime \prime}$ is homotopically equivalent to $B^{3}-h(C)$. So $\left(B^{3} \times[-1,1]\right)-L$ is homotopically equivalent to $B^{3}-h(C)$ and applying Van Kampen's theorem we have

$$
\Pi_{1}\left(E^{4}-L\right) \cong G /\left\{x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(p)}^{\epsilon(p)}\right\}
$$

Theorem 2. Suppose $G_{1}$ and $G_{2}$ are knot groups each presented in the usual manner:

$$
\begin{aligned}
G_{1} & =\left\{x_{1}, x_{2}, \ldots, x_{a} \mid r_{1}=r_{2}=\cdots=r_{b}=1\right\} \quad \text { and } \\
G_{2} & =\left\{y_{1}, y_{2}, \ldots, y_{c} \mid s_{1}=s_{2}=\cdots=s_{d}=1\right\} .
\end{aligned}
$$

Let $L$ be a figure eight complex with sewing words $\alpha^{r} \beta^{s}, \alpha^{m} \beta^{n}$. Then for any $(r+s)$-tuple of integers $i(1), \ldots, i(r), i(r+1), \ldots, i(r+s)$ between 1 and $a$, and for any $(m+n)$-tuple of integers $j(1), \ldots, j(m), j(m+1), \ldots, j(m+n)$ between 1 and $c$, there is an embedding of $L$ in $E^{4}$ such that

$$
\begin{aligned}
& \Pi_{1}\left(E^{4}-L\right) \cong G_{1} * G_{2} /\left\{x_{i(1)} \cdots x_{i(r)} y_{j(1)} \cdots y_{j(m)}\right. \\
& x_{i(r+1)}\left.\cdots x_{i(r+s)} y_{j(m+1)} \cdots y_{j(m+n)}\right\}
\end{aligned}
$$

where the right side is the group obtained by adding the two relations $x_{i(1)} \cdots x_{i(r)} y_{j(1)} \cdots y_{j(m)}=1$ and $x_{i(r+1)} \cdots x_{i(r+s)} y_{j(m+1)} \cdots y_{j(m+n)}=1$ to the free product of $G_{1}$ and $G_{2}$.

Proof. Let $G_{1}=\Pi_{1}\left(E^{3}-C_{1}\right)$ and $G_{2}=\Pi_{1}\left(E^{3}-C_{2}\right)$, where $C_{1}, C_{2}$ are two unlinked tame simple closed curves in $E^{3}$. Let $K_{1}$ and $K_{2}$ be unknotted polyhedral simple closed curves in $E^{3}-\left(C_{1} \cup C_{2}\right)$, such that $K_{1}$ is in the equivalence class represented by the word $x_{i(1)} \cdots x_{i(r)} y_{j(1)} \cdots y_{j(m)}$ and $K_{2}$ is in the equivalence class represented by the word $x_{i(r+1)} \cdots x_{i(r+s)} y_{j(m+1)} \cdots$ $y_{j(m+n)}$ in $G_{1} * G_{2}=\Pi_{1}\left(E^{3}-\left(C_{1} \cup C_{2}\right)\right)$. We may choose $K_{1}$ and $K_{2}$ so that they bound disjoint polyhedral disks $A_{1}$ and $A_{2}$, respectively, in $E^{3}$, where $A_{1} \cap$ $C_{1}, A_{1} \cap C_{2}, A_{2} \cap C_{1}, A_{2} \cap C_{2}$ consist of exactly $r, m$, $s$ and $n$ points, respectively.

Let $T$ be a solid two-holed 3-dimensional torus in $E^{3}$, and let $M_{1}, M_{2}, M_{3}$, and $M_{4}$ be the meridional disks of $T$ as seen in Figure 1. These four disks divide $T$ into three cells $W_{1}, W$, and $W_{2}$ (see Figure 1). Let $h$ be a homeomorphism of $E^{3}$ onto itself which maps $C_{1}$ and $C_{2}$ into Int $T$ and maps
$A_{i}$ onto $M_{i}, i=1,2$. Furthermore, $h$ is constructed so that ( $W_{i}, W_{i} \cap\left(h\left(C_{1}\right)\right.$ $\left.\cup h\left(C_{2}\right)\right)$ ) is homeomorphic to $\left([0,1] \times D^{2},[0,1] \times F_{i}\right)$, where $D^{2}$ is a disk and $F_{i}$ is a finite set, $i=1,2$. That is, we may assume no knotting or tangling of $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$ occurs in $W_{1}$ or $W_{2}$.

Let $B^{3}$ be a polyhedral 3 -cell in $E^{3}$ containing $T$ in its interior. Let $f$ be a piecewise linear map of $B^{3}$ onto itself which leaves $\operatorname{Bd} B^{3}$ pointwise fixed, is a homeomorphism on $B^{3}-T$, shrinks $W$ to a point, and maps $\overline{T-W}$ onto the center core (a figure eight) of $T$. Then the mapping cylinder of $f, M_{f}$ $\approx B^{3} \times[0,1]$. Let $L^{\prime}=M_{f^{\prime}}$, where $f^{\prime}=f \mid h\left(C_{1}\right) \cup h\left(C_{2}\right)$. Then

$$
\left(B^{3} \times[0,1], L^{\prime}\right) \cap\left(E^{3} \times\{t\}\right) \approx\left(B^{3}, h\left(C_{1}\right) \cup h\left(C_{2}\right)\right) \quad \text { if } 0 \leq t<1
$$

and

$$
\left(B^{3} \times[0,1], L^{\prime}\right) \cap\left(E^{3} \times\{1\}\right) \approx\left(B^{3}, \text { figure eight }\right)
$$

By the Lemma, $\left(B^{3} \times[0,1]\right)-L^{\prime}$ is homotopically equivalent to $B^{3}-\left(h\left(C_{1}\right)\right.$ $\left.\cup h\left(C_{2}\right)\right)$.

Since $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$ are unlinked, there exist disjoint 3-balls $B_{1}, B_{2}$ in $B^{3}$ containing $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$, respectively. Let $g$ be a piecewise linear map of $B^{3}$ onto itself which leaves $\mathrm{Bd} B^{3}$ pointwise fixed, is a homeomorphism on $B^{3}-\left(B_{1} \cup B_{2}\right)$, and shrinks $B_{1}$ and $B_{2}$ to points. Then $M_{g} \approx B^{3} \times[-1,0]$. Let $L^{\prime \prime}=M_{g^{\prime}}$, where $g^{\prime}=g \mid h\left(C_{1}\right) \cup h\left(C_{2}\right)$. $L^{\prime \prime}$ is the union of two disjoint disks and $L^{\prime}=L^{\prime} \cup L^{\prime \prime}$ is a figure eight complex with sewing words $\alpha^{r} \beta^{s}$, $\alpha^{m} \beta^{n}$.

$$
\left(B^{3} \times[-1,0], L^{\prime \prime}\right) \cap\left(E^{3} \times\{t\}\right) \approx\left(B^{3}, h\left(C_{1}\right) \cup h\left(C_{2}\right)\right) \quad \text { if }-1<t \leq 0
$$

and

$$
\left(B^{3} \times[-1,0], L^{\prime \prime}\right) \cap\left(E^{3} \times\{-1\}\right) \approx\left(B^{3},\{p, q\}\right)
$$

Again by the Lemma, $\left(B^{3} \times[-1,0]\right)-L^{\prime \prime}$ is homotopically equivalent to $B^{3}-\left(h\left(C_{1}\right) \cup h\left(C_{2}\right)\right)$. So $\left(B^{3} \times[-1,1]\right)-L$ is homotopically equivalent to $B^{3}-\left(h\left(C_{1}\right) \cup h\left(C_{2}\right)\right)$, and applying Van Kampen's theorem we have

$$
\begin{aligned}
& \Pi_{1}\left(E^{4}-L\right) \cong G_{1} * G_{2} /\left\{x_{i(1)} \cdots x_{i(r)} y_{j(1)} \cdots y_{j(m)}\right. \\
& x_{i(r+1)}\left.\cdots x_{i(r+s)} y_{j(m+1)} \cdots y_{j(m+n)}\right\}
\end{aligned}
$$

Theorem 3. Suppose $G$ is a knot group and $G$ is presented in the usual manner:

$$
G=\left\{x_{1}, x_{2}, \ldots, x_{a} \mid r_{1}=r_{2}=\cdots=r_{b}=1\right\} .
$$

If $L$ is any complex of type $(1,1,1)$ with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$ or $L$ is any figure eight complex with sewing words $\alpha^{r} \beta^{s}, \alpha^{m} \beta^{n}$, then for each triple of integers $i, j$ and $k$ between 1 and a there exists an embedding of $L$ in $E^{4}$ such that $\Pi_{1}\left(E^{4}-L\right)$ is presented by $\left\{x_{1}, x_{2}, \ldots, x_{a} \mid r_{1}=r_{2}=\cdots=r_{b}=1\right.$ $\left.=x_{i}^{-1} x_{j} x_{k}\right\}$.

Proof for complexes of type $(1,1,1)$ with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$. Given any three arbitrary generators $x_{i}, x_{j}$, and $x_{k}$ (not necessarily distinct) of $G$, we claim that we can pick generators $x_{i(1)}, x_{i(2)}, \ldots, x_{i(p)}$ of $G$ such that $x_{i}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(p)}^{\epsilon(p)}=x_{i}^{-1} x_{j} x_{k}$ (or $x_{k} x_{i}^{-1} x_{j}$ or $x_{j} x_{k} x_{i}^{-1}$ ). Then the conclusion follows immediately from Theorem 1 .

The proof is by induction on $p$, the length of the sewing word. The induction begins with $p=3$. In this case, $L$ is just the dunce hat and the result was first obtained in [4].

Suppose the result is true for all $p^{\prime}$ such that $3 \leq p^{\prime}<p$, and consider a complex $L$ of type $(1,1,1)$ with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$. Let $j$ be the greatest integer such that $\epsilon(j)$ has the opposite sign as $\epsilon(p)$, (hence $\epsilon(j+1)$ $=-\epsilon(j))$, and consider the complex $L^{\prime}$ of type $(1,1,1)$ with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(j-1)} \alpha^{\epsilon(j+2)} \cdots \alpha^{\epsilon(p)}$. Given $x_{i}, x_{j}, x_{k}$, there exist by induction on $p^{\prime}=p-2$, generators $x_{i(1)}, x_{i(2)}, \ldots, x_{i(j-1)}, x_{i(j+2)}, \ldots, x_{i(p)}$ of $G$ such that

$$
G /\left\{x_{i}^{-1} x_{j} x_{k}\right\} \cong G /\left\{x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(j-1)}^{\epsilon(j-1)} x_{i(j+2)}^{\epsilon(j+2)} \cdots x_{i(p)}^{\epsilon(p)}\right\} .
$$

Therefore, by Theorem 1 , letting $x_{j}=x_{j+1}=x$, there exists an embedding of $L$ in $E^{4}$ such that

$$
\begin{aligned}
\Pi_{1}\left(E^{4}-L\right) & \cong G /\left\{x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(j-1)}^{\epsilon(j-1)} x^{\epsilon(j)} x^{-\epsilon(j)} x_{i(j+2)}^{\epsilon(j+2)} \cdots x_{i(p)}^{\epsilon(p)}\right\} \\
& \cong G /\left\{x_{i(1)}^{\epsilon(1)} x_{i(2)}^{\epsilon(2)} \cdots x_{i(j-1)}^{\epsilon(j-1)} x_{i(j+2)}^{\epsilon(j+2)} \cdots x_{i(p)}^{\epsilon(p)}\right\} \\
& \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\} .
\end{aligned}
$$

Proof for figure eight complexes $L$ with sewing words $\alpha^{r} \beta^{s}, \alpha^{m} \beta^{n}$. Let $C$ be a knot such that

$$
\Pi_{1}\left(E^{3}-C\right) \cong G=\left\{x_{1}, x_{2}, \ldots, x_{a} \mid r_{1}=r_{2}=\cdots=r_{b}=1\right\}
$$

Applying Theorem 2, where $C_{1}=C$ and $C_{2}$ is a trivial knot (that is; $\left.\Pi_{1}\left(E^{3}-C_{2}\right) \cong Z=\{z \mid\}\right)$, there exists an embedding of $L$ in $E^{4}$ such that

$$
\Pi_{1}\left(E^{4}-L\right) \cong G * Z /\left\{x_{i(1)} \cdots x_{i(r)} z^{m}, x_{i(r+1)} \cdots x_{i(r+s)} z^{n}\right\}
$$

On the other hand if we take $C_{1}$ to be trivial and $C_{2}=C$, then there exists an embedding of $L$ in $E^{4}$ such that

$$
\Pi_{1}\left(E^{4}-L\right) \cong Z * G /\left\{z^{r}\left(x_{i(1)} \cdots x_{i(m)}, z^{s} x_{i(m+1)} \cdots x_{i(m+n)}\right\}\right.
$$

Hence it suffices to show that given positive integers $r, s, m$ and $n$ such that $r n-s m= \pm 1$ and three arbitrary generators (not necessarily distinct) $x_{i}, x_{j}$. and $x_{k}$ of $G=\Pi_{1}\left(E^{3}-C\right)$, either we can choose generators $x_{i(1)}, x_{i(2)}, \ldots$, $x_{i(r+s)}$ of $G$ so that

$$
G * Z /\left\{x_{(1)} \cdots x_{i(r)} z^{m}, x_{i(r+1)} \cdots x_{i(r+s)} z^{n}\right\} \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\}
$$

or we can choose generators $x_{i(1)}, x_{i(2)}, \ldots, x_{i(m+n)}$ of $G$ so that

$$
Z * G /\left\{z^{r} x_{i(1)} \cdots x_{i(m)}, z^{s} x_{i(m+1)} \cdots x_{i(m+n)}\right\} \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\}
$$

Case 1: $r=s$ (or $m=n$ ). If $r=s$ (or $m=n$ ) it follows from the fact $r n-s m= \pm 1$ that $r=s=1$ and $n=m \pm 1$ (or that $m=n=1$ and $r=s \pm 1)$. Thus we must consider one of the following 4-tuples $(r, s, m, n)$ of integers $(1,1, m, m+1),(1,1, m-1, m),(s+1, s, 1,1)$ or $(s-1, s, 1,1)$. For the first set of integers, we add the relations (1) $z x_{i}^{m}=1$ and (2) $z x_{i}^{m-1} x_{j} x_{k}=1$ to $Z * G$. By (1) we can eliminate $z$ from the presentation $\left(z=x_{i}^{-m}\right)$ and (2) becomes $x_{i}^{-1} x_{j} x_{k}=1$. For the second set of integers, we add the two relations $z x_{i}^{m-2} x_{j} x_{k}$ and $z x_{i}^{m-1}$ to $Z * G$. For the third set we add the two relations $x_{j} x_{k} x_{i}^{s-1} z=1$ and $x_{i}^{s} z=1$ to $G * Z$. For the fourth set we add the two relations $x_{i}^{s-1} z=1, x_{j} x_{k} x_{i}^{s-2} z=1$ to $G * Z$.

Case 2: $r<s$ (or $r>s$ ). We first note that if $r<s($ or $r>s)$ then $m \leq n$ (or $m \geq n$ ). For if $r<s$ and $m>n$, then $\pm 1=r n-s m<r n-s n$ $=(r-s) n \leq-1$, a contradiction. Similarly, if $r>s$ and $m<n$, then $\pm 1=r n-s m>r n-r m=r(n-m) \geq 1$, a contradiction. So by Case 1, we can assume $r<s$ and $m<n$ or $r>s$ and $m>n$.

The proof is by induction on $r+s+m+n$, where either $r<s$ and $m<n$ or $r>s$ and $m>n$. The induction begins with the 4-tuple ( $r, s, m, n$ ) being either $(1,2,1,3)$ or $(2,1,3,1)$. For the first, we add the two relations $z x_{i}=1$ and $z^{2} x_{i} x_{j} x_{k}=1$ to $Z * G$, and for the second we add the two relations $z^{2} x_{i} x_{j} x_{k}=1$ and $z x_{i}=1$ to $Z * G$. Next we assume the theorem is true for all $t$ such that $r+s+m+n<t$ and either $r<s$ and $m<n$ or $r>s$ and $m>n$.

Now we assume $r+s+m+n=t$ and either $r<s$ and $m<n$ or $r>s$ and $m>n$. We first suppose $r<s$ and $m<n$. Then we have that $(r, s, m, n)$ is of the form ( $r, r+u, m, m+v$ ), where $u \geq 1$ and $v \geq 1$. We observe that $r v-u m= \pm 1$ (that is, $(r, u, m, v)$ is of the desired form), because $\pm 1=r n$ $-s m=r(m+v)-(r+u) m=r v-u m$. Now $r+u+m+v<r+s+m$ $+n=t$ and either $r=u$ or $m=v, r<u$ and $m<v$, or $r>u$ and $m>v$. Hence it follows by Case 1 or the inductive hypothesis that the theorem is true for the 4-tuple $(r, u, m, v)$. Thus either (i) generators $x_{i(1)}, x_{i(2)}, \ldots, x_{i(r+u)}$ of $G$ can be chosen so that

$$
G * Z /\left\{a_{1} z^{m}, b_{1} z^{\nu}\right\} \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\}
$$

where $a_{1}=x_{i(1)} x_{i(2)} \cdots x_{i(r)}$ and $b_{1}=x_{i(r+1)} x_{i(r+2)} \cdots x_{i(r+u)}$, or (ii) generators $x_{i(1)}, x_{i(2)}, \ldots, x_{i(m+v)}$ of $G$ can be chosen so that

$$
Z * G /\left\{z^{r} a_{2}, z^{u} b_{2}\right\} \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\}
$$

where $a_{2}=x_{i(1)} x_{i(2)} \cdots x_{i(m)}$ and $b_{2}=x_{i(m+1)} x_{i(m+2)} \cdots x_{i(m+v)}$. If (i) is true for $(r, u, m, v)$, then for $(r, s, m, n)=(r, r+u, m, m+v)$, we add the two relations $a_{1} z^{m}=1$ and $b_{1} a_{1} z^{m+v}=1$ to $G * Z$, which is the same as adding the two relations $a_{1} z^{m}=1$ and $b_{1} z^{\nu}=1$ to $G * Z$. By (i), this is the same as adding $x_{i}^{-1} x_{j} x_{k}=1$ to $G$. If (ii) is true for $(r, u, m, v)$, then for $(r, r+u, m, m$ $+v$ ), we add the two relations $z^{r} a_{2}=1$ and $z^{r+u} a_{2} b_{2}=1$ to $Z * G$, which is the same as adding $z^{r} a_{2}=1$ and $z^{u} b_{2}=1$. By (ii), this is the same as adding $x_{i}^{-1} x_{j} x_{k}=1$ to $G$.

Finally, we suppose $r+s+m+n=t$ and $r>s$ and $m>n$. Then we have that $(r, s, m, n)$ is of the form $(s+f, s, n+g, n)$ where $f \geq 1$ and $g \geq 1$. Since $\pm 1=r n-s m=(s+f) n-s(n+g)=f n-s g$, then $(f, s, g, n)$ is of the desired form. Also $f+s+g+n<r+s+m+n=t$ and either $f=s$ or $g=n, f<s$ and $g<n$, or $f>s$ and $g>n$. So by Case 1 or induction, the theorem is true for $(f, s, g, n)$. Thus we can choose generators of $G$ so that either
(i') $G * Z /\left\{a_{3} z^{g}, b_{3} z^{n}\right\} \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\}$,
where $a_{3}=x_{i(1)} x_{i(2)} \cdots x_{i(f)}$ and $b_{3}=x_{i(f+1)} x_{i(f+2)} \cdots x_{i(f+s)}$, or
(ii') $Z * G /\left\{z^{f} a_{4}, z^{s} b_{4}\right\} \cong G /\left\{x_{i}^{-1} x_{j} x_{k}\right\}$,
where $a_{4}=x_{i(1)} x_{i(2)} \cdots x_{i(g)}$ and $b_{4}=x_{i(g+1)} x_{i(g+2)} \cdots x_{i(g+n)}$.
If ( $\mathrm{i}^{\prime}$ ) is true for $(f, s, g, n)$ then for ( $s+f, s, n+g, n$ ), we add the two relations $a_{3} b_{3} z^{n+g}=1$ and $b_{3} z^{n}=1$ to $G * Z$. If (ii') is true then we add the two relations $z^{s+f} b_{4} a_{4}=1$ and $z^{s} b_{4}=1$ to $Z * G$.

Corollary. If $L$ is any figure eight with sewing words $\alpha^{r} \beta^{s}, \alpha^{m} \beta^{n}$ or any complex of type $(1,1,1)$ with sewing word $\alpha^{\epsilon(1)} \alpha^{\epsilon(2)} \cdots \alpha^{\epsilon(p)}$, then there exist infinitely many distinct embeddings of $L$ in $E^{4}$.

Proof. By Theorem 3, it will suffice to show there exist infinitely many distinct groups $G_{i=1}^{\infty}$ such that by adding the appropriate relation $x_{i}^{-1} x_{j} x_{k}$ $=1$ to each one, we still obtain infinitely many distinct groups.

We start by considering a torus knot $K_{p, q}$ where $p$ and $q$ are relatively prime positive integers and $p>q . \Pi_{1}\left(E^{3}-K_{p, q}\right)$ has a presentation
$H=\left\{a_{1}, a_{2}, \ldots, a_{p} \mid a_{k} a_{k+1} \cdots a_{k+q+1}=a_{k+1} a_{k+2} \cdots a_{k+q}, k=1,2, \ldots, p\right\}$ (see [3, p. 155]). Setting $x=a_{1} a_{2} \cdots a_{q}$ and $y=a_{1} a_{2} \cdots a_{p}$, we get $H^{\prime}$ $=\left\{x, y \mid x^{p}=x^{q}\right\}$ where $a_{k}=x^{d(1-k)} y^{c} x^{d k}, k=1,2, \ldots, p$ and $c$ and $d$ are integers such that $c p+d q=1$ (see [3]). Letting $p=2 q+1$, then $c p+d q$ $=1$ is satisfied for $c=1$ and $d=-2$. Then $a_{k}=x^{2(k-1)} y x^{-2 k}$. By Theorem 3 there exists an embedding of $L$ in $E^{4}$ such that

$$
\Pi_{1}\left(E^{4}-L\right) \cong \Pi_{1}\left(E^{3}-K_{p, q}\right) /\left\{a_{1}^{-1} a_{q+1} a_{q+2}\right\}
$$

Under the presentation $H^{\prime}$ the relation $a_{1}=a_{q+1} a_{q+2}$ becomes

$$
y x^{-2}=x^{2 q} y x^{-2 q-2} x^{2 q+2} y x^{-2 q-4} \quad \text { or } \quad y x^{2 q+2}=x^{2 q} y^{2} .
$$

So $\Pi_{1}\left(E^{4}-L\right)$ is isomorphic to the group with the following presentation:

$$
G_{q}^{\prime}=\left\{x, y \mid x^{2 q+1}=y^{q}, y x^{2 q+2}=x^{2 q} y^{2}\right\}
$$

The second relation may be written as $y x x^{2 q+1}=x^{-1} x^{2 q+1} y^{2}$. Hence, substituting $y^{q}$ for $x^{2 q+1}$ we get:

$$
G_{q}^{\prime \prime}=\left\{x, y \mid x^{2 q+1}=y^{q}, x y x=y^{2}\right\} .
$$

Thus for each positive integer $q>2$, there exists an embedding of $L$ in $E^{4}$ such that $\Pi_{1}\left(E^{4}-L\right)$ is isomorphic to the group with presentation:

$$
G_{q}=\left\{x, y \mid x^{2 q+1}=y^{q},(x y)^{2}=y^{3}\right\} .
$$

Now let $q=3 i(i \geq 1)$. By adding the relation $y^{3}=1$, we obtain:

$$
\hat{G}_{i}=\left\{x, y \mid x^{6 i+1}=y^{3}=(x y)^{2}=1\right\}
$$

Bing (see [1, p. 35]) showed these groups have a nontrivial representation in the symmetric group $S_{2 q+1}$ by sending $x \rightarrow(1,2,3, \ldots, 6 i+1)$ and $y \rightarrow$ $(6 i+1,2,1)(6 i, 4,3) \cdots(4 i+2,4 i, 4 i-1)(4 i+1)$. Thus the groups $G_{q}$ for $q=$ $3 i$ are all nontrivial.

To complete the proof, it suffices to find infinitely many distinct groups of the form $G_{q}, q=3 i$. To this end, we show that $G_{q^{\prime}} \neq G_{q}$ for $q=3 i$ and $q^{\prime}=3 j$, where $6 i+1$ and $6 j+1$ are prime numbers with $q^{\prime}>q$.

By above, we have a nontrivial homomorphism of $G_{q}$ into $S_{2 q+1}$. In order to show $G_{q}^{\prime}$ is distinct from $G_{q}$, we need only show there is no nontrivial homomorphism of $G_{q^{\prime}}$ into $S_{2 q+1}$. Suppose otherwise, that is, that we have a homomorphism $\psi: G_{q^{\prime}} \rightarrow S_{2 q+1}$, where $\psi\left(x^{\prime}\right)=\hat{x}$ and $\psi\left(y^{\prime}\right)=\hat{y} \quad(\hat{x}, \hat{y}$ $\left.\in S_{2 q+1}\right)$, and

$$
G_{q^{\prime}}=\left\{x^{\prime}, y^{\prime} \mid x^{\prime 2 q^{\prime}+1}=y^{\prime q^{\prime}},\left(x^{\prime} y^{\prime}\right)^{2}=y^{\prime 3}\right\}
$$

Since $\left((2 q+1)!, 2 q^{\prime}+1\right)=1$, there are integers $b, t$ such that $b(2 q+1)$ ! $+t\left(2 q^{\prime}+1\right)=1$. Since $\hat{x}^{2 q^{\prime}+1}=\psi\left(x^{\prime 2 q^{\prime}+1}\right)=\psi\left(y^{\prime q^{\prime}}\right)=\hat{y}^{q^{\prime}}$, then $\hat{x}$ $=\hat{x}^{b(2 q+1)!+t\left(2 q^{\prime}+1\right)}=\hat{x}^{t\left(2 q^{\prime}+1\right)}$ (since the order of $\left.S_{2 q+1}=(2 q+1)!\right)=\hat{y}^{t q^{\prime}}$. Thus $\hat{x}$ and $\hat{y}$ commute. From this and the fact that $\hat{y}^{3}=(\hat{x} \hat{y})^{2}$, we get $\hat{y}=\hat{x}^{2}$. That and $\hat{x}^{2 q^{\prime}+1}=\hat{y}^{q^{\prime}}$ imply $\hat{x}=1$. Also $\hat{y}=\hat{x}^{2}=1$. Thus $\psi$ is trivial. Since $\psi$ was arbitrary the conclusion follows.

## Bibliography

1. R. H. Bing, Necessary and sufficient conditions that a 3-manifold be $S^{3}$, Ann. of Math. (2) 68 (1958), 17-37. MR 20 \# 1973.
2. L. C. Glaser, Uncountably many contractible open 4-manifolds, Topology 6 (1966), 37-42. MR 34 \# 5072.
3 J. Hempel, A simply connected 3-manifold is $S^{3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158. MR 28 \# 599.
3. J. P. Neuzil, Embedding the dunce hat in $S^{4}$, Topology 12 (1973), 411-415.
4. E. C. Zeeman, On the dunce hat, Topology 2 (1963), 341-358. MR 27 \#6275.

Department of Mathematics, Kent State University, Kent, Ohio 44242

Current address: Department of Mathematics, Clarion State College, Clarion, Pennsylvania 16214


[^0]:    Presented to the Society January 24, 1975; received by the editors November 11, 1974 and, in revised form, May 5, 1975.
    AMS (MOS) subject classifications (1970). Primary 57C35, 57C45; Secondary 57A15.
    Key words and phrases. Complexes of type (1,1,1), contractible 2-complexes, Euclidean 4-space, figure eight complexes, piecewise linear embedding.
    ${ }^{1}$ This paper is a part of the author's Ph.D. thesis which was prepared under the supervision of Professor J. P. Neuzil at Kent State University.

