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EMBEDDING CONTRACTIBLE 2-COMPLEXES
IN E4

BENJAMIN M. FREED1

Abstract.    If L is any figure eight complex or any complex of type (1,1,1),

then there are infinitely many different embeddings of L in E4.

1. Introduction. By generalizing Mazur's embedding of the dunce hat in 5"*

(refer to [5]), Glaser [2] has constructed infinitely many different contractible

2-complexes each embedded piecewise linearly in S4 so as to have nonsimply

connected complements. Neuzil [4] has constructed an embedding of the

dunce hat in S4 with nonsimply connected complement.

In this paper, we extend Neuzil's result to complexes of type (1,1,1) and do

the same for figure eight complexes. Moreover, if L is any one of these

complexes, then there are infinitely many distinct embeddings of L in £"*.

The author would like to thank the referee for his many helpful suggestions.

2. Definitions and notation. A figure eight complex with sewing words

arRs, amR" is a contractible 2-complex obtained by attaching two disks Dx, D2

to a figure eight a V R by the formula arRs, amR", respectively, where r, s, m,

n are positive integers such that rn — sm = ± 1. This last condition guarantees

contractibility.

A complex of type (1,1,1) with sewing word a£'''ac'2' • • • cr-p' is a contrac-

tible 2-complex obtained by attaching a disk to a circle a by the formula

a<i)ae(2) .. .a*(p) where ^ = ±1 and 2?=1 e(/) = ±i. This last condition

guarantees contractibility. We note that the dunce hat is an example of a

complex of type (1,1,1) with sewing word a~xaxax.

By a knot group G presented in the usual manner

G = {x,,x2,... ,x„\rx = r2 = • ■ • = rm = 1}

we mean the following: for a tame simple closed curve C in £3 let

G = n^Ts3 - C). We suppose the knot C has a presentation with respect to

which it is divided into n arcs by its undercrossing points, and that G is

generated by xx, x2, ..., xn where Xj is represented by a simple closed curve

in E   — C which encircles once they'th arc and passes under no other arc.
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If M is a manifold then Bd M and Int M will denote the boundary of M

and interior of M, respectively. We will use = to denote group isomorphism

and « to denote homeomorphism. By (m,n) = 1, we mean that the two

integers m and n are relatively prime.

3. Main results.

Lemma . Suppose f is a map of X onto Y and A C X. Iff\f~x(Y - f(A)) is

a homeomorphism then M(f) — M(f\A) is homotopically equivalent to X — A.

The proof is by deformation retraction along the fibers of the mapping

cylinder.

The first theorem is just a generalization of Neuzil's result in [4].

Theorem 1. Suppose G is a knot group and G is presented in the usual

manner:

G = {xx,x2,...,xn\rx = r2 = ■■■ = rm = 1}.

If L is a complex of type (1,1,1) with sewing word a^x'ar2' ■ ■ • a€^p\ then for any

p-tuple of integers i(\), i(2), ..., i(p) between 1 and n, there is an embedding of

L in E4 such that II, (EA — L) is presented by

I I i     «(')   t(2) t(p) _  ..
{xx,x2,... ,xn\rx — r2 — ■ ■ ■ — rm — l,*,(i)-K,(2) • • • xfoj — 1)

- tyl*j(l)*j(2)        •%»)/•

Proof. Let G = IT, (7s3 — C), where C is a tame simple closed curve in E3.

Let K be an unknotted polyhedral simple closed curve in 7s3 — C such that A"

is in the equivalence class represented by the word ■xjHj-x-RI ' •' xi(p) m tne

given presentation of G where c(z) = ± 1 and 2f= 1 «(') = ± • • We choose K

so that K bounds a tame disk A in E3 such that A n C is exactly p interior

points of A.

Let T be a solid 3-dimensional torus in 7f3. We write T = Sx X D2. Let h

be a homeomorphism of 7s3 onto itself which maps C into Int T and maps A

onto a meridional disk of T. Divide Sx into two arcs 7, and I2 such that

(72X7)2,(72X7)2) n h(C)) ^ (I2X D2,I2x{yx,y2, . . .,yp}),

whereyx ,y2, ..., y are distinct points in Int D2. By putting an orientation on

72, we can pick K and h and orient C so that the induced orientation on 72 X yi

is + if e(z') = +1 and - if c(z) = -1.

Let P3 be a polyhedral 3-cell in 7s3 containing T in its interior. Let/ be a

piecewise linear map of B3 onto itself which leaves Bd B3 pointwise fixed, is a

homeomorphism on B3 - T, shrinks 7, X D2 to a point, and maps 72 X D2 to

the center core Sx X 0 of Sx X D2. Then the mapping cylinder of / Mf, is

homeomorphic to B3 X [0,1]. Let L = Mf, where /' = f\h(C). Then (B3

X[0,1],L') D (E3x{t})^(B3,h(C)) if 0<r<l and (B3 X [0,1],L')

n (£3 X {1}) w (fi3,^1). By the Lemma, (B3 X [0,1]) - L is homotopically

equivalent to B3 - h(C).
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Let Bx be a 3-ball in B3 containing h(C) in its interior. Let g be a piecewise

linear map of Ti3 onto itself which leaves Bd B3 pointwise fixed, is a

homeomorphism on B3 - Bx, and shrinks Bx to a point. Then Mg « B3

X [-1,0]. Let L" = Mg,, where g' = g\h(C). L" is a disk and L = L U L"
is a complex of type (1,1,1) with sewing word a,e[})a,-(2) "'" a]\PX

(B3 X [-1,01 L") n (E3 X {t}) » (£3,n(C))    if -1 < / < 0

and

(Ti3 X [-1,0],L") n (E3 X {1}) « (Ti3, point).

Again by the Lemma, (Ti3 X [-1,0]) - L" is homotopically equivalent to

B3 - h(C). So (Ti3 X [-1,1]) - L is homotopically equivalent to Ti3 - h(C)

and applying Van Kampen's theorem we have

Ux(E4-L)^G/{xfx]xfyxifA.

Theorem 2. Suppose Gx and G2 are knot groups each presented in the usual

manner:

G, = {x,,x2,. .. ,xjrx = r2 = • • • = rb = 1}    and

g2 = [y\,yi,---,yc\s\ = s2 = •■• = sd= l).

Let L be a figure eight complex with sewing words arRs, amRn. Then for any

(r + s)-tuple of integers i(\), ..., i(r), i(r + 1), ..., i(r + s) between 1 and a,

and for any im + nftuple of integers j(\), ... ,j(m), j(m + 1), ... ,j(m + n)

between 1 and c, there is an embedding of L in E   such that

UX(E4 - L)^GX* G2/{x/(1) • ■■xi(r)yjm ■ ■ ■ yj(m),

Xi(r+l) ' " xi(r+s)yj(ftt+l) ' ' 'yj(m+n))<

where the right side is the group obtained by adding the two relations

xt(\) • • • xi(r)yj(\) ■ • -yj'm) = 1 and x(.(r+1) ■ • • xi{r+s)yj(m+x) ■ ■ ■yj(m+n) = 1 to

the free product of Gx and G2.

Proof. Let Gx = UX(E3 - C,) and G2 = n,^3 - C2), where C,, C2 are

two unlinked tame simple closed curves in E3. Let TC] and TC2 be unknotted

polyhedral simple closed curves in E3 - (Cx U C2), such that Kx is in the

equivalence class represented by the word xjt^ • • • *,m.K(i) "" '^(m) an^ ^2 is

in the equivalence class represented by the word xJ-(/.+ ,s • • • xifr+s-.y,,m + 1* —

yj{m+n) in G, * G2 = nj(£"3 - (Cx U C,)). We may choose A:, and K2 so that

they bound disjoint polyhedral disks Ax and A2, respectively, in E3, where Ax A

CX,A{ n C2, A2 n Cp A2 AC2 consist of exactly r, m, s and n points, respectively.

Let T be a solid two-holed 3-dimensional torus in E3, and let Mx, M2, M3,

and M4 be the meridional disks of T as seen in Figure 1. These four disks

divide T into three cells Wx, W, and W2 (see Figure 1). Let n be a

homeomorphism of E3 onto itself which maps C. and C2 into Int Tand maps
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Aj onto Mj, i = 1, 2. Furthermore, h is constructed so that (Wh W{ n (h(Cx)

U h(C2))) is homeomorphic to ([0,1] X D2, [0, 1] X 7;), where 7>2 is a disk and

Fj is a finite set, i = 1,2. That is, we may assume no knotting or tangling of

h(Cx) and h(C2) occurs in Wx or W2.

Let B3 be a polyhedral 3-cell in E3 containing T in its interior. Let/be a

piecewise linear map of B3 onto itself which leaves Bd P3 pointwise fixed, is a

homeomorphism on B3 - T, shrinks W to a point, and maps T — W onto the

center core (a figure eight) of T. Then the mapping cylinder of / Mj

« P3 X [0,1]. Let L' = Mr, where/' = /|A(C,) U h(C2). Then

(P3X[0,1],7/) n (£3x{z-}) « (S3,/z(C,) U h(C2))    if 0 < t < 1,

and

(P3 X [0,1],L') n (7±3 X {1}) » (P3, figure eight).

By the Lemma, (P3 X [0,1]) - L' is homotopically equivalent to P3 - (h(Cx)

U h(C2)).

Since h(Cx) and A(C2) are unlinked, there exist disjoint 3-balls Bx, B2 in B3

containing h(Cx) and h(C2), respectively. Let g be a piecewise linear map of

P3 onto itself which leaves Bd P3 pointwise fixed, is a homeomorphism on

P3 - (P, U P2), and shrinks P, and P2 to points. Then Mg ss P3 x [-1,0].

Let L" = Mg-, where g' = g|A(C,) U h(C2). L" is the union of two disjoint

disks and L = L' U L" is a figure eight complex with sewing words arBs,
amB".

(P3x[-1,0],L") n (E3x{t)) w (B3,h(Cx) U h(C2))    if -1 < t < 0,

and

(P3X[-1,0],L") n (£3x{-l})«(P3,{p,z7}).

Again by the Lemma, (P3 X [—1,0]) — L" is homotopically equivalent to

P3 - (A(Ci) U /z(C2)). So (B3 X [-1,1]) - L is homotopically equivalent to

P3 - (h(Cx) U />(C2)), and applying Van Kampen's theorem we have

n,(£4 - L)^GX* G2/{xi(x) ■ ■•xi{r)ym ■ ■ ■ yj{m),

Xi{r + \) ' ' ' xi(r+s)yj(m+\) ' ' '>/(ot+zz))■

Theorem 3. Suppose G is a knot group and G is presented in the usual

manner:

G = [xx,x2,...,xa\rx = r2 = ••• = rb = 1}.

If L is any complex of type(\,\,\) with sewing word ar- ''co2' • • • arp' or L is any

figure eight complex with sewing words arBs, amB", then for each triple of integers

i, j and k between 1 and a there exists an embedding of L in E such that

II](E4 — L)      is      presented      by      {xx,x2,.. . ,xa\rx = r2 = • • • = rb = 1

=  Xj     XjXk).
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Proof for complexes oftypei\,\,\) with sewing word or^x'a^2' ■ ■ ■ aAp>. Given

any three arbitrary generators x,, x, and xk (not necessarily distinct) of G, we

claim that we can pick generators xtix\, -*,(2)> • ■ ■. *,•(») or G sucn mat

*z7i)-*z72) '"' xj[p\ = x7lXjXk (or xkxTx Xj or XjXkx~x). Then the conclusion

follows immediately from Theorem 1.

The proof is by induction on p, the length of the sewing word. The induction

begins with/; = 3. In this case, L is just the dunce hat and the result was first

obtained in [4].

Suppose the result is true for all p' such that 3 < p' < p, and consider a

complex L of type (1,1,1) with sewing word acXX'alX-2' • • ■atXp\ Let j be the

greatest integer such that e(j) has the opposite sign as t(p), (hence t(j + 1)

= -*(/)), and consider the complex L' of type (1,1,1) with sewing word

a«( )a«(2) ... aet/_l)a«(T+ ) ... a*yp\ Given x,, Xj, xk, there exist by induction on

p' = p-2, generators x,(1), x,(2), ..., xi(J_x), xi{j+2), ..., xi(p) of G such

that

lr/\Xj   Xjxk) = o/lx(.())x(.(2)   ■■xj(j_x)xi(j+2)     -Xj^)).

Therefore, by Theorem 1, letting Xj = x+1 = x, there exists an embedding of

L in E4 such that

n(r4_  r\ ~ rJlAX) A2) . . . Ah1) vt0) y-e(y)   <0'+2) t(/>h11, (/S    - T.) = G/(X/(1)X.(2) *,•(,•_,.) * vy/* ^0+2) *z(p)J

= W l*/(l) *«-(2) *i(/-l)*f(T+2) *<(/>)'

s* G/fx^'xyX*.}.

Proof for figure eight complexes L with sewing words arRs, amR". Let C be a

knot such that

IT^Ti3 - C) ^ G = {x,,x2,...,x>, = r2 = ••• = rfc = 1}.

Applying Theorem 2, where Cx = C and C2 is a trivial knot (that is;

fTi(£   — C2) = Z = {z|    }), there exists an embedding of L in E4 such that

n,(£4 -L)^G* Z/{x,.(1) ■ -x,wzm,Vl) ■ •■xi{r+s)z").

On the other hand if we take Cx to be trivial and C2 = C, then there exists an

embedding of L in £4 such that

n,(£4 - L)^Z* G/V(x,.(1) • ••x(.(m),2ix/(m+1) ■ ••x,.(m+n)}.

Hence it suffices to show that given positive integers r, s, m and n such that

rn - sm = ± 1 and three arbitrary generators (not necessarily distinct) x(, x-.

and xk of G = II, (is3 - C), either we can choose generators xtix\, x,z2), ...,

xi(r+s) °^ G so that

G * Z/{x(1) • • ■xi(r)zm,xi(r+x) ■ ■•xi,r+s)z") s GAx-'x^-x^}

or we can choose generators x((,j, x,.^), • • •, •*,(„,+„) of G so that
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Z * G/{zrxi(x) ■ ■ -xi(m),zsxi(m+x) ■ ■■xi{m+n)) as G/{x7x XjXk).

Case 1: r = s (or m = n). If r = s (or w = «) it follows from the fact

rn — sm = ±1 that r = s = \ and « = m ± 1 (or that m = n = \ and

z- = j ± 1). Thus we must consider one of the following 4-tuples (r,s,m,n) of

integers (1, \,m, m + 1), (1,1, m — \,m), (s + l,s, 1,1) or (s — l,s, 1,1). For the

first set of integers, we add the relations (1) zx™ = 1 and (2) zxf~x XjXk = 1

to Z * G. By (1) we can eliminate z from the presentation (z = x7m) and (2)

becomes x~x XjXk = 1. For the second set of integers, we add the two relations

zxf~2XjXk and zxf~x to Z * G. For the third set we add the two relations

XjXkxf~xz = 1 and xfz = 1 to G * Z. For the fourth set we add the two

relations xf~lz = 1, XjXkxs~2 z = 1 to G * Z.

Case 2: r < s (or r > s). We first note that if r < .? (or r > s) then

m < n (or m > «). For if r < j and m > «, then ±1 = rn — sm <Zl rn — sn

= (r — s)n < —I, a contradiction. Similarly, if r > j and w < «, then

±1 = rn — sm^> rn — rm = r(n — m) > 1, a contradiction. So by Case 1,

we can assume /■ < s and zn <« or r > i and m > «.

The proof is by induction on r + j + m + n, where either r < .y and w < «

or r >i and w > n. The induction begins with the 4-tuple (r,s,m,n) being

either (1,2,1,3) or (2,1,3,1). For the first, we add the two relations zxt = 1 and.

z XjXjXk =1 to Z * G, and for the second we add the two relations

z2XjXjXk = 1 and zxt = 1 to Z * G. Next we assume the theorem is true for

all / such that r + s + m + n<Ct and either r < s and m < « or r > j and

m > n.

Now we assume r + s + m + n = t and either r < j and m < n or r > 5

and w > zz. We first suppose r < .? and m < «. Then we have that (/%.?, m, n)

is of the form (r, r + u,m,m + v), where u > 1 and v > 1. We observe that

rv — um = ±1 (that is, (r,u,m,v) is of the desired form), because ±\ = rn

— sm = r(m + iv) — (r + w)w = rcz — «m. Now /•+w + w + iz<z" + .s + m

+ « = z" and either r = u or m = v, r <C u and w < iz, or r > w and m > 1/.

Hence it follows by Case 1 or the inductive hypothesis that the theorem is true

for the 4-tuple (r,u,m,v). Thus either (i) generators x(z,), x^2y ..., xi<r+u) of

G can be chosen so that

G*Z/{axzm,bxz»}^G/{x-xXjXk)

where a, = xi{l)xi{2) ■ ■ ■ xi{r) and bx = xi{r+x)xj(r+2) ■ ■ ■ xi{r+u), or (ii) genera-

tors .x^,), x(z2), ..., Xjtm+l/\ of G can be chosen so that

Z*G/{zra2,z"b2}^G/{x-xXjXk}

where a2 = xi{x)xj{2) ■ ■ ■ xl(m) and b2 = xl{m+x)xi(m+2) ■ ■ ■ xl(m+v). If (i) is true

for (r,u,m,v), then for (r,s, m, n) = (r, r + u, m, m + v), we add the two

relations axzm = 1 and bx ax zm+v = 1 to G * Z, which is the same as adding

the two relations axzm = 1 and bxzv = 1 to G * Z. By (i), this is the same as

adding x]~xXjXk = 1 to G. If (ii) is true for (r,u,m,v), then for (r,r + u,m,m

+ v), we add the two relations zra2 = 1 and zr+"a2b2 = 1 to Z * G, which is

the same as adding zra2 = 1 and zub2 = 1. By (ii), this is the same as adding

x~x XjXk = 1 to G.
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Finally, we suppose r + s + m+n = t and r > s and m > n. Then we

have that (r, s, m, n) is of the form (s + f s, n + g, n) where / > 1 and g > 1.

Since ±1 = rn - sm = (s + f)n - s(n + g) = fn — sg, then (fs,g,n) is of

the desired form. Also f+s + g + n<Cr + s + m + n = t and either f = s

or g = n, f <i s and g < n, or / > s and g > n. So by Case 1 or induction,

the theorem is true for (/, s, g, n). Thus we can choose generators of G so that

either

(i') G * Z/{a3zS,b3z") a. G/{xr»x,xfc},

where a3 = x.(1)x,(2) • • • x((/) and b3 = x,(/+1)x,(/+2) • • • xi(f+s), or

(ii') Z * G/Va4,z5z54} = G/vX-'x/X^},

where a4 = x;(1)x,(2) • ■ -x,.(g) and bA = x{g+x)xi(g+2) ■ ■ ■ xi(g+n).

If (i') is true for (fs,g,n) then for (s + fs,n + g,n), we add the two

relations a3b3z"+g = 1 and b3z" = 1 to G * Z. If (ii') is true then we add the
two relations zs+-^b4a4 = 1 and zsb4 = 1 to Z * G.

Corollary . If L is any figure eight with sewing words arRs, amR" or any

complex of type (1,1,1) with sewing word a^x'a^2' •■•ae^p', then there exist

infinitely many distinct embeddings of L in E4.

Proof. By Theorem 3, it will suffice to show there exist infinitely many

distinct groups G-Zx such that by adding the appropriate relation x~x XjXk

= 1 to each one, we still obtain infinitely many distinct groups.

We start by considering a torus knot TC where p and q are relatively prime

positive integers and/? > q. II,(Ts3 - Kpq) has a presentation

TT = {ax,a2,...,ap\akak + x ■ ■ ■ ak+q+x = ak + xak+2 ■■■ak+q,k = \,2,...,p)

(see [3, p.   155]). Setting x = axa2- ■ • aq and y = axa2 • • ■ ap, we get TT'

= [x,y\xp = x*} where ak = Ax~k)ycxdk, k = 1, 2, ..., p and c and d are

integers such that cp + dq = 1 (see [3]). Letting p = 2q + 1, then cp + dq

= 1 is satisfied for c = 1 and d = -2. Then ak = x2t-k~x'yx~2k. By Theorem

3 there exists an embedding of L in E4 such that

II,(£4 - L) a II,(£3 - KM)/{ax-xaq+xaq+2).

Under the presentation TT' the relation ax = aq+xa +2 becomes

yx~2 = x2^x-2^2x2'+2^x-2*-4    or   yx2^1 = x2V-

So n,(£4 - L) is isomorphic to the group with the following presentation:

G'q = {x,^|x2" + 1 = ^^x2^2 = x2V}.

The second relation may be written as_yxx2<7+1 = x~xx2q+xy2. Hence, substi-

tuting^9 for x2q+x we get:

G"q = {x,y\x2<+x =yfxyx=y2}.

Thus for each positive integer q > 2, there exists an embedding of L in E4

such that II, (£4 — L) is isomorphic to the group with presentation:

Gq = {x,y\x2q+x = yf(xy)2 = y3).
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Now let q = 3i (i > 1). By adding the relation^3 = 1, we obtain:

G, = {x,y\x6i+x = / = (xy)2 = 1}.

Bing (see [1, p. 35]) showed these groups have a nontrivial representation in

the symmetric group S2q+X by sending x -* (1,2,3,. . . , 6/ +  1) and y -*■

(6i +1,2, 1X6/, 4, 3) • • • (4/ + 2, Ai, Ai - l)(4z + 1). Thus the groups Gq for q =
3z are all nontrivial.

To complete the proof, it suffices to find infinitely many distinct groups of

the form Gq, q = 3i. To this end, we show that Gq- ̂  Gq for q = 3/ and

q' = 3j, where 6/ + 1 and 6/ + 1 are prime numbers with q' > q.

By above, we have a nontrivial homomorphism of Gq into S2q+X. In order to

show G'q is distinct from Gq, we need only show there is no nontrivial

homomorphism of Gq- into S2q+X. Suppose otherwise, that is, that we have a

homomorphism xp: Gq< -* S2q+i, where xp(x') = x and xp(y') = y (x,y

G S2q+X), and

Gq, = {x',y'\x'2l>'+X =y'i\(x'y')2=y'3}.

Since ((2q + l)!,2z7' + 1) = 1, there are integers b, t such that b(2q + 1)!
+ t(2q' + 1) = 1.     Since    x^'+x = xp(x'2q'+x) = xp(y">') = y"',     then     x

=    -b(2q+\)\ + ,{2q+\)   =   jez(29'+l) (sin(;e the or(jer of ^^   =   t2g +   j),)   =~tq\

Thus x and y commute. From this and the fact that y3 = (xy) , we get

y = x2. That and x2q+x = yq imply x = 1. Also y = x2 = 1. Thus xp is

trivial. Since t/z was arbitrary the conclusion follows.
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