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A REMARK ON DERIVATIONS AND
SKEW-DERIVATIONS ON ) (M)

TSUNEO SUGURI

ABSTRACT. We give here the corrections of the Proposition of S.
Kobayashi and K. Nomizu concerning the derivation and skew-derivation
of the algebra of differential forms on a differentiable manifold.

Let M be an n-dimensional differentiable manifold, and )" (M) the space
of differential forms of degree r defined on M. Then with respect to the
exterior product, % (M) = 2"_,%" (M) forms an algebra over the real field
R. A derivation or a skew-derivation of ) (M) is a linear mapping of ) (M)
into ) (M) satisfying the following condition:

(1) D: derivation:

D(wAw)=DwN\o +wA Do, forw o € D(M).
(2) D: skew-derivation:
D(wAwW)=DwAw + (—1)o A Dw, forwe D(M), o € D(M).

A derivation or a skew-derivation D of % (M) is said to be of degree k if it
maps D" (M) into "% (M) for every r. Then the following proposition is
given in S. Kobayashi and K. Nomizu [2].

PROPOSITION. (a) If D and D’ are derivations of degree k and k', respectively,
then DD’ — D'D is a derivation of degree k + k'.

(b) If D is a derivation of degree k and D' is a skew-derivation of degree k',
then DD’ — D’D is a skew-derivation of degree k + k'.

(c) If D and D' are skew-derivations of degree k and k', respectively, then
DD’ + D'D is a derivation of degree k + k'.

(d) A4 derivation or a skew-derivation is completely determined by its effect on
DYM) = F(M) and D'(M).

Recently, through discussions at the Research Institute of Mathematics,
Tamkang College, I find that the conclusions (b) and (c¢) of the Proposition
should be corrected as follows.

PROPOSITION. [Case B]. If D is a derivation of degree k and D' is a
skew-derivation of degree k', then we have:

(1) If k is even, then DD' — D'D is a skew-derivation of degree k + k'.

(2) If k is odd, then there exists no nonzero derivation nor skew-derivation of
the type DD’ — D'D or of the type DD’ + D’D.

[Case C). If D and D’ are skew-derivations of degree k and k', respectively,
then we have:
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(1) If k and k' are both even, then DD’ — D'D is a derivation of degree
k+ k'

(2) If k and k' are both odd, then DD’ + D’D is a derivation of degree
k+ k.

(3) If one of k or k' is even and the other is odd, then there exists no nonzero
derivation nor skew-derivation of the type DD’ — D’D or of the type DD’ +
D’'D.

The verifications of Cases B and C are straightforward, so we omit them.

N. B. (i) See [1] for a systematic discussion of these questions.

(1)) F. W. Warner [3] calls a skew-derivation an antiderivation.
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