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ON MODELS =.,, TO AN UNCOUNTABLE MODEL

MARK nadel

Abstract. It is shown that a model is = «,« to an uncountable model

provided there is an uncountable model of its complete theory with respect

to some admissible fragment containing a copy of the given model.

It has been known for some time that ThA(M), the set of all sentences of

LA true of the structure M, need not characterize M in Lxa, even though A is

admissible and M G A. In particular, if M is countable, it may not be

characterized up to isomorphism. For examples of this phenomenon the

reader may consult [7], as well as for any other terminology used, but not

explicitly introduced herein. Consequently, it is of interest to determine what

properties of a structure can be obtained from its LA theory, where A is any

admissible set containing it as an element, and so from the smallest such

admissible set.

The primary purpose of this brief paper is to present a result in this

direction. In §2 we will show that if a structure M is an element of a

countable admissible set A, then there is an uncountable model =Ml0 to M iff

AhA(M) has an uncountable model.

Since in our setting ThA(M) will be 2-definable on A, one should naturally

look to the well-known result due independently to Gregory [2] and Ressayre

[8] which tells exactly when a 2-definable theory on a countable admissible

set has an uncountable model. As far as we can see, our result does not seem

to follow from the statement of the Gregory-Ressayre theorem. However, by

looking at Ressayre's proof, one is led to a proof of our result.

Ressayre's proof involves the notion of a Y.A -saturated model. In our proof,

we also, in effect, rely on 2^ -saturated models, but from a different point of

view.

Throughout we deal with admissible sets which may contain urelements,

but need not contain co. The primary reference for admissible sets with

urelements is, of course, [1]. Admissible sets will be denoted by A, B, etc.

Models will be denoted by M, N, etc., and are always taken to be the

structures appropriate to the language L.

As the reader is no doubt aware, M =XUN means that the models M and

A' satisfy the same sentences of Lxa, the infinitary language closed under

arbitrary conjunctions and disjunctions, but only finite quantifiers. M =AN

means that M and N agree on all sentences of Laoa in A, while M =" N

means that M and N agree on all sentences of Laou of quantifier rank at most

a. We use similar notation for notions of elementary submodel— M <MJV.
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Harnik, M. Makkai, J.-P. Ressayre, and J. Stavi, as well as the National

Research Council of Canada for financial assistance during the summer of

1974, when our work on the subject of this paper began. It should be noted

that Theorem 2.1 below can be obtained, though in a less direct fashion, using

more general results of Makkai [4].

1. In contrast to the counterexample mentioned in our introductory re-

marks, the following weak result does hold.

Lemma 1.1. Suppose A is admissible and M, N G A. Then

M =AN   iff   M =X„N.

Corollary. Suppose A is admissible, M,N G A, and M and N are count-

able. Then

AT =^7V    iff   M and N are isomorphic.

A proof of Lemma 1.1 in a slightly more general case can be found in [5]

or [7].

We will apply Lemma 1.1 to obtain a required uniqueness result for

2^ -saturated models. The notion of a "LA -saturated model is due to Ressayre

[7], who used the term 2-compact. The term 2^ -saturated was used later by

Harnik [3]. The notion we introduce below appears very different from

Ressayre's notion, but, as observed by Ressayre [8], is, in fact, equivalent to it

for a large class of A. The notion stated below was studied by the present

author in [6] without knowledge of Ressayre's work, and the existence

theorem proved directly for this notion. Since this notion is the one we

actually use in our proof of Theorem 2.1 below, it alone will be introduced.

Since we did not give a name to this notion in [6], we borrow the term

"2^-saturated", although our notion may be weaker in the case of certain A,

though not in the natural setting of Lemma 1.4 below.

Definition 1.2. Let A be a countable admissible set and T a theory in LA.

A model M of T is said to be Unsaturated iff M is countable and is an

element of some admissible B D A, with the same ordinals as A.

Such a set B is usually referred to as a fattening of A. It should be pointed

out that, in general, given two 2^-saturated models, there may be no common

fattening of A containing both of them.

As mentioned earlier, we have the following existence theorem.

Theorem 1.3. Let A be a countable admissible set, and suppose T is a

consistent ^-definable theory in LA. Then T has a ~LA-saturated model.

A proof of the above can be found in [6] or [8], though in [6] we adopted

the blanket assumption that A contains to, which was not necessary for this

result. Of course, in the case that co G A, there is a much simpler proof (cf.

[!])■

Our immediate interest in 2,,-saturated models is the following strengthen-

ing of Lemma 1.1.

Lemma 1.4. Let A be a countable admissible set and T a complete theory in

LA. Suppose T has a model in A. Then T has a unique 2^,-saturated model up to

isomorphism.
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Proof. Assume M G A is a model of T. Let TV be any other 2^-saturated

model of T and suppose B is some fattening of A containing TV.

Since M G A, one has in /I sentences aa, for each ordinal a E. A, such that

A7 N aa, and a0 is complete for all sentences of quantifier rank <. a, i.e., if <£

is a sentence of quantifier rank < a, then either N aa —> tb or 1= aa —>—1 <p.

Consequently, these sentences aa are in 71, since it is complete for LA.

Now, since TV N T, we have M =" TV where a is the least ordinal not in A.

However, since every sentence of LB has quantifier rank K a, we have

M =BN. Finally, since M and TV are elements of B, by Lemma 1.1, M and TV

are isomorphic.

Dropping the countability requirement throughout in Lemma 1.4, we could

conclude that all "2^,-saturated" models are swo.

2. We are now prepared to prove the result mentioned in our introductory

remarks.

Theorem 2.1. Suppose A is a countable admissible set and M G A. The

following five conditions are equivalent.

(i)   There is an uncountable model TV such that M =AN.

(ii)   There are models TV, and N2 such that Nx =aM and NX^>AN2.

(iii)   There is a model TV such that M^    N (and consequently, by the

downward Lowenheim-Skolem theorem, a countable TV isomorphic to M).

(iv)   There is an uncountable model TV such that M -< aBa TV.

(v)   There is an uncountable model TV such that M =xaN.

Proof, (i) => (ii). For TV2 choose some uncountable model of T, the com-

plete theory of M in LA. By the downward Lowenheim-Skolem theorem,

there is some countable TV, such that TV, -< A TV2. Clearly, M =AN, and TV, is

a proper submodel of TV2.

(ii) => (iii). We introduce a new unary predicate U to form a language L'

suitable for describing the elementary submodel condition in (ii). We form a

new theory 7" in L'A by adding to T

(3x)[~lU(a)],      <p^<t>(u)

for each formula tp of LA, where tp(-U) denotes the usual relativization of <j> tp

the predicate symbol U. It is clear that for any model of T', the reduction to

the original language L of the restriction of that model to U is a model of T

and a proper LA -elementary submodel of the reduction of the model to L.

Since J" is obviously 2-definable on A, and since by (ii) T' has a model, by

Theorem 1.3 above, T has an 2^-saturated model A/'. As above, let TV, be

the reduction to L of the restriction of M' to U, and let TV' be the reduction

of M' to L. It is clear that both TV, and TV' are models of T, and that they are

even 2^-saturated since each is an element of the same fattening of A which

contains AT. Consequently, by Lemma 1.4 above, both TV, and TV' are

isomorphic to M. In particular then, there is some proper LA -elementary

embedding/of M into TV'.

If mx, . . . , mk are any elements of M, then our hypothesis tells us that

(M,mx, . . . , mk) =A(N',f(mx), . . . ,f(mk)). We may now appeal to Lemma

1.4 once again to conclude that (M,mx, . . . , mk) and (N',f(mx), . . . ,f(mk))



310 MARK NADEL

are isomorphic. Since this isomorphism holds for every sequence of elements

mx, . . . , mk of M, we may conclude that / is actually a proper Lxa-

elementary embedding of M into N'. It is now routine to find a countable

model N such that M:fL N.

(iii) => (iv). Our objective is to define an L^-elementary chain of countable

models M^ M,3> ■ • • i- M„^ ■ ■ ■ for each countable ordinal a.

Then, by the Tarski-Vaught theorem, the union of the chain will be an

uncountable L ̂ -elementary extension of M.

One inductively constructs MB+X by noting first that Mg is isomorphic to

AT, and appealing to (iii). At limit stages one takes the union of the previously

constructed chain and appeals to the Tarski-Vaught theorem to guarantee

that the union is an L^-extension of each of the preceding models, and, in

particular, again isomorphic to M.

(iv) => (v) and (v) => (i) are both immediate.    □

In Theorem 2.1, the set A may be taken as the smallest admissible set

containing AT. In this case, the version of Theorem 1.3 required is easily

proved using only the Barwise Compactness Theorem.

As an application of Theorem 2.1, let us consider the case in which the

admissible set A contains only the finite ordinals. Then, if M G A, and M is

infinite, M must be built from urelements. If we further require that AT is a

structure for a finite language, we may then just as well assume that the

language is composed of pure sets. Hence, no matter how "wide" A may be,

LA will still be LU01, ordinary finitary logic. Since, by the upward Lowenheim-

Skolem theorem for finitary logic, every consistent theory in Lwu has an

uncountable model, it follows from Theorem 2.1 that M will be swo to an

uncountable model, and, in fact, is an ooco-elementary submodel of an

uncountable model. In summary, we have established

Corollary. Suppose A is countable admissible with only finite ordinals,

AT G A is a structure for a finite language, and M is infinite. Then there is an

uncountable model N such that M -<MJV.
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