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ON RINGS WHOSE LEFT MODULES ARE
DIRECT SUMS OF FINITELY GENERATED

MODULES

KENT R. FULLER1

Abstract. The relationship between rings of finite module type and rings

whose left modules have decompositions that complement direct summands

is examined by proving that the latter are precisely the rings of the title.

A ring A with identity is said to be of finite module (or representation) type in

case it is left artinian and has only finitely many (isomorphism types of)

finitely generated indecomposable left modules. Such a ring is also right

artinian and has only finitely many (the same number) finitely generated

indecomposable right modules (Eisenbud and Griffith [7]). Auslander [2], [3]

and Ringel and Tachikawa [17] have proved that every module over a ring of

finite module type is a direct sum of finitely generated modules, and

Tachikawa [17] has shown that they all have decompositions M = ®A Ma that

complement direct summands in the sense [1] that for each direct summand A

of M there is a subset B E A with M = K © i®BMp).

Chase [6] proved that the rings of the title are left artinian. (See also [8] and

[11].) More recently, Auslander [5] has proved that if A is finitely generated

over its center and each left A-module is a direct sum of finitely generated

modules, then A is of finite module type, and Fuller and Reiten [9] have noted

that if every left and every right A-module has a decomposition that

complements direct summands, then A is of finite module type. However, it is

still not known whether either of these conditions on its left modules alone

forces an arbitrary ring A with identity to be of finite module type. Our

purpose here is to prove that nevertheless they are equivalent, and to show

how their satisfaction depends on the structure of the finitely generated

indecomposable left A-modules.

We say that a ring A has enough idempotents in case there exists orthogonal

idempotents (ea)aeA in A (called a complete set of idempotents for R) such that

A = ffi^Aea = ®AeaR. By an R-module we mean an R-module with a

spanning set; so "RM is a left A-module" implies M = RM = ®AeaM. (Note

then that if 1 E A, an A-module is just a unital one.) We denote the

categories of left and right A-modules by ^'DIL and <3flL/?, and mention that they

contain the regular modules RR and RR, respectively, and all ordinary

submodules of their objects.
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Harada [12] and [13] has pointed out that over a ring R with enough

idempotents ordinary direct sums and tensor products behave as they do over

a ring with identity, and that the projective fi-modules are the direct

summands of free modules. Moreover, he has observed that Bass's Theorem P

is valid for R. I.e., the following are equivalent: (a) every left fi-module has a

projective cover; (b) R has a complete set of local idempotents and J(R) is left

P-nilpotent; (c) every flat left fi-module is projective; (d) R has d.c.c. on

principal right ideals.

There is a slight difference for direct products though. The (categorical)

direct product of (M ) eC in /?'Dltis not the ordinary cartesian product T[c M ,

but rather R ■ (T[c My), which we denote by nc My. It is easy to see that this

is indeed a direct product in Rc0t, and, using the idempotents (ea)a£A, that

II My = (rx G fi My\r G R,x G II My\

= sx G Y[ My\x = ex    for some e = e2 G R >.

Of course, ®GMy < nc My and the usual injections and projections do their

respective jobs. We also write APC' for the direct sum of card C copies of M,

Mc for the direct product in ^91L and Mc for the cartesian product.

We shall write all homomorphisms on the right, so fg means "first/then g".

The principal tool that we shall use is a particular ring with enough

idempotents. Let A be a ring with identity and let AJ = ®A Ua be a direct sum

of finitely generated submodules (Ua)aeA. Let

R = {r: AJ^AJ\Uar = 0, a.e.}

("a.e." means "for all but finitely many a G A"), and let (ea)aeA be the

orthogonal set of idempotents in R such that Uea = Ua(a G A). We call R

the functor ring of the (Ua)aSA, because, although it does not really concern us

here, the category RtyiL (resp., <3HK) is equivalent to the category of contravari-

ant (covariant) additive functors from the full subcategory £ll of A<31t with

objects {Ua\a G A] to the category of abelian groups (e.g., see [10]). In

particular, if (Ua)aeA consists of one isomorphic copy of each finitely

generated left A-module, R is the functor ring of the finitely generated left A-

modules.

Let AJ = ®A Ua (with each Ua finitely generated) and R be as above. Then

AJR is a bimodule and, letting

Hf3rriA(c/,A/) = [cp: AJ -» AM\Uacp = 0, a.e.)

and, for each/: AM —» AAP in r^U

U = Hr5rrIA(c/,/): cp ̂  cpf       (cp G Horn/ U, M )),

we obtain a covariant functor Hom4((7, —): a^lt—> p^JK, that commutes with

direct products (HomA(t/, lie ^y) = Lie HomA((7, My)) and direct sums

(since Im tp is finitely generated for all <p G HomA(t7, M)) , and has left

adjoint (U <8>R —): /j^lt -» A91L There are natural transformations
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v: U ®R HomA(t/, —) -» 1^,        V- 1„<dh -» HomA(t/,(t/ ©* —))

defined via

j^: uSipB wrjD,    «7j^: t/ i-> « ® n.

Moreover, since HomA(J7, U)=R, v y: U ®R HomA(£/, U) -* &U and r? #:

A -» Homi((/,((/ ®# A)) are the canonical isomorphisms. Thus, since both

functors commute with direct sums, they restrict to inverse category equiva-

lences

H55A(t/, -): Add(At/) -» Proj(^A),       (t/ ®A -): Proj(^A) -» Add(At/)

where Add(At/) and Proj(RA) are, respectively, the full subcategories of A3H

and fl<31t whose objects are the direct summands of direct sums of copies of U

and the projective left A-modules.

In the terminology of Auslander [4], a family of homomorphisms is called

noetherian in case, for each sequence of nonisomorphisms

M0 -&> Mx -&> M2 -> • • •

in the family, there exists an n such that f0fx ■ • -fn = 0. The family is

conoetherian if it satisfies the obvious dual condition. In [4] he proved that if,

over an artinian ring A, the families of monomorphisms and of epimorphisms

between finitely generated indecomposable left modules are, respectively,

noetherian and conoetherian, then A is of finite module type (cf. condition (d)

in our Theorem below).

With the above notation and conventions, and acknowledging a great debt

to the ideas of Auslander [3] and Harada [12], [13], we are now in position to

prove the

Theorem . Let A be a ring with identity and let A be the functor ring of the

finitely generated left A-modules. Then the following are equivalent:

(a) Every left A-module is a direct sum of finitely generated modules.

(b) Every direct product of projective left R-modules is projective.

(c) A is left perfect.

(d) 1 E A is a sum of orthogonal primitive idempotents and the family of

homomorphisms between finitely generated indecomposable left A-modules is

noetherian.

(e) Every left A-module has a decomposition that complements direct sum-

mands.

Proof, (a) => (b). Assume (a). Then Add(At/) = A91t, and Proj(wA)

« Add(Af7) is closed under direct products.

(b) =» (c). For this implication, upon noting that for each a E A, a • (Ac)

is just the ordinary abelian group direct product (aA)c, one can virtually copy

Chase's proof [6, Theorem 3.1] to show (b) implies that A has d.c.c. on

principal right ideals.

(c) => (a). Let M E A91t, let C = HomA(f/, Af) and let / = fficv: U{c)
-» M. Then, since AA is isomorphic to one of the Ua (so A£/ is a generator), we
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have an epimorphism U^c' -A M —> 0 such that each y G HomA(l/,M)

factors through/

s\   A
(7

So, since here y = ey = etf for some e = e2 G R, the sequence

rTomA((/, t/(c)) -^ HornA(t/,M) -* 0

is exact. But HomA([/, M) = U{HomA(c/, L)|L < M and L is finitely

generated } is a direct limit of projective left fi-modules, so the hypothesis (c)

implies that/* splits. Now, since AJis a generator implies that each vM is epic,

we can apply the 5-lemma to

o

J
U®R HomA(/7, AT) —>• U ®R HomA((7, U(c)) -* U ®R HomA((7, M) ~* 0

%(€) "M

fK->■ <7(c)-► M-► 0

i I !
0 0 0

(with K = Ker/) to see that vM is an isomorphism, and hence that/also splits.

Thus Add(AJ) = A91L Finally, since (c) also implies that each End(A£/a)

= eaRea is left perfect (so Ua = VaX © ■ ■ • © Van with each EndA(I£,) local),

the Crawley-Jonsson-Warfield theorem [18] shows that every module in

Add( AJ) is a direct sum of finitely generated modules (with local endomor-

phism rings).

(c) =» (d). Assume (c) and suppose we have a sequence of A-maps

^uq uax ^a2

with no a, an isomorphism and each Ua indecomposable. Then Ua = Uea

and a, = ea.a,-ea.+1. Let J = J(R). If ea. = ea.+i then, since ea.Rea. is local,

a, £ J(ea.Rea.) = ea.Jea.. If ea. ¥= ea.+i then, since Ua. corresponds to Rea.

under the equivalence HomA([/, —): Add(AJ) -* Proj(/?fi), fiea ^ ^eai+,

and, hence, a, G e„ Re„ C e?„ /e„ . Thus, since 7 is left P-nilpotent, there

is an « such that a0ai ""' an = 0-

(d) => (c). Assume (d). Let AA/ be finitely generated and indecomposable.

Let s G End(AA/). Then the noetherian condition implies that 5 is either

invertible or nilpotent, so End(AA/) is local. In particular, A = Ag, © • • •

© Ag„ with the g, local orthogonal idempotents, so A is semiperfect. This

implies that each of the finitely generated Ua is a direct sum of indecomposa-

ble modules which, as we have just seen, must have local endomorphism rings.

Thus we can find a complete set of local idempotents (fa)aeA for R (here each
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ea is a sum of some of them's). If a0, ax, ... is a sequence in /(A) then there

exist idempotents f0,fx,f2, ... (each a sum of fa 's) with

«0al   ' ' ' an  = foaofl a\h • - -fnanfn+\ •

If none of these products is zero we can apply the Konig graph theorem to

obtain a sequence fa , fa , ... with none of the products

/«„%/«, al  ' • -fa^nfa^  = °-

But this is contrary to the noetherian assumption because, since they belong

to J(R), none of thej^ajj,    : Ufa. -* Ufa    is invertible.

(a) and (c) =» (e). If'(a) holds then A91t' = Add(Af7) « Proj(^A). Since the

argument (a) => (b) in [1, Theorem 6] clearly is valid for a ring with enough

idempotents, each module in Proj(^A) (and hence in A3H) has a decomposi-

tion that complements direct summands if A is left perfect.

(e) => (d). This is by [15, Lemma 9].

From this Theorem and Auslander's theorem [5] that an artin algebra whose

left modules are direct sums of finitely generated modules is one of finite

module type, we have (with necessity due to Tachikawa [17]) the

Corollary . // A is finitely generated over its center, then A is of finite

module type if and only if each left A-module has a decomposition that

complements direct summands.

Together with [9], the Theorem yields the following result (which was

already known to Auslander and to Gruson and Jensen).

Corollary . If every left and every right A-module is a direct sum of finitely

generated modules then A is a ring of finite module type.

Remark. (1) Let iVB)BeB represent one copy of each finitely generated

indecomposable left A-module. If we make the additional assumption that

1 E A is a sum of orthogonal primitive idempotents (so that ®B VB is a

generator) then we can replace R in conditions (b) and (c) of the Theorem with

the functor ring A' of the iVB)BeB.

(2) "Every left A-module" in condition (e) can be replaced by "every

countably generated left A-module" or by "every countable direct sum of

finitely generated left A-modules."

(3) In [2], [4] (and [16]) there has been established a 1-1 correspondence

between the rings of finite module type and the Morit?. equivalence classes of

artinian (semiprimary) rings that have global dimension < 2 and dominant

dimension > 2. The correspondence is A <-> A' = End(ff © • • • © V„) where

Vx,..., V„ represent the indecomposable left A-modules. It seems likely,

especially in view of the results of [12]—[14] that an appropriate extension of

this correspondence might help to determine whether or not rings whose left

modules are direct sums of finitely generated modules need be rings of finite

module type. (Are they even right artinian?)

(4) Auslander [5] has actually shown that if every indecomposable left

module over an artin algebra is finitely generated, the algebra is of finite
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module type. His proof of this theorem and the results of [4] show that the

conditions: (a') A is left artinian and every indecomposable left A-module is

finitely generated; and (d') A is left artinian and has no infinite sequences

A/q —* Mx —> M2 —* • ■ • of proper monomorphisms between finitely generated

indecomposable left modules, also serve to characterize the rings of the title.
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