CONJUGATE POWERS IN HNN GROUPS

MICHAEL ANSHEL

ABSTRACT. Our purpose is to show the conjugacy problem is solvable for certain *HNN* groups with many stable letters and in the process investigate conjugate powers in these groups.

Let $G(l,m) = \langle a,b; a^{-1}b^l a = b^m \rangle$ where $|l| \neq 1 \neq |m|, l, m \neq 0$, and l,m are relatively prime. It is stated in [1, Theorem 1] that if $x \in G(l,m)$ and x^l is conjugate to x^m , then x is conjugate to a power of b. Although the theorem is correct, the proof given in [1] is not. We will prove the following generalization of the above theorem for certain HNN groups with many stable letters.

We employ the following concepts in our discussion. A group is a *U-group* if extraction of roots is unique when possible [4b, p. 11]. A subgroup H is malnormal in a group K if $gxg^{-1} \in H$, $1 \neq x \in H$ implies that $g \in H[3]$, [6]. A group is said to be 2-free if every two generator subgroup is free [3].

THEOREM 1. Let G be an HNN group with base B and stable letters a_i $(i \in I)$ given by

(I)
$$\langle B, a_i; \operatorname{rel} B, a_i^{-1} W_i^{p_i} a_i = V_i^{q_i} \ (i \in I) \rangle$$

where W_i , V_i are words in the generators of B, W_i , $V_i \neq 1$ in B and p_i , $q_i \neq 0$ for $i \in I$. Suppose the following conditions are satisfied:

- (1) B is a U-group.
- (2) W_i , V_i ($i \in I$) generate malnormal subgroups.

If $x \in G$ and x^l is conjugate to x^m where $|l| \neq |m|$, then x is conjugate to a power of W_i or a power of V_i for some $i \in I$.

Let us call p_i , q_i $(i \in I)$ the exponents of G. When there are finitely many exponents, $W = W_i = V_i$ for $(i \in I)$ and G satisfies the hypothesis of Theorem 1, we will write $G(p_1, q_1, \ldots, p_k, q_k, W)$. We say that G has unmeshed exponents when they are distinct and relatively prime in pairs. Let B be a free product of two finitely generated free groups with infinite cyclic amalgamated subgroups given by

(II)
$$\langle b_1, \ldots, b_n, c_1, \ldots, c_m; R(b_1, \ldots, b_n) = S(c_1, \ldots, c_m) \rangle$$
.

We extend the results of [2] by proving

Received by the editors November 20, 1974.

AMS (MOS) subject classifications (1970). Primary 20F05; Secondary 20E05.

Key words and phrases. HNN groups with many stable letters, conjugate powers, conjugacy and generalized conjugacy problem, word and generalized word problem, U-group, residually-free and 2-free, malnormal, reachability problem.

THEOREM 2. Suppose $G(p_1, q_1, \ldots, p_k, q_k, W)$ satisfies the following:

- (1) B is given by (II) and is both residually free and 2-free.
- (2) The exponents of the group are unmeshed.

Then $G(p_1, q_1, \ldots, p_k, q_k, W)$ has solvable conjugacy problem.

Let A consist of those groups B given in (II) whose factors are isomorphic. Further assume that F is an isomorphism from $\langle b_1, \ldots, b_n; \rangle$ to $\langle c_1, \ldots, c_n; \rangle$, R generates its own centralizer in $\langle b_1, \ldots, b_n; \rangle$ and S = F(R). Gilbert Baumslag has shown that the groups of A are residually free and 2-free [4a].

COROLLARY 1. Suppose $G(p_1, q_1, \ldots, p_k, q_k, W)$ satisfies the following:

- (1) B is in A.
- (2) The exponents of the group are unmeshed.

Then $G(p_1, q_1, \ldots, p_k, q_k, W)$ has solvable conjugacy problem.

COROLLARY 2. Suppose $G(p_1, q_1, ..., p_k, q_k, W)$ satisfies the following:

- (1) B is the fundamental group of a closed Riemann surface of genus $g \ge 2$ [9, p.91].
- (2) The exponents of the group are unmeshed. Then $G(p_1, q_1, \ldots, p_k, q_k, W)$ has solvable conjugacy problem.

Let F be the free product of free groups $F_1 * F_2$ with amalgamated subgroups $F_1 \cap F_2$. According to Lemma 2 of [1], if x^l is conjugate to x^m in F where $|l| \neq |m|$, then x is conjugate to some y in the amalgamated subgroup. Prompted by a question from R. Hirshon, the author produced a counterexample to that assertion.

Let $F_1 = \langle b, r_1, r_2; \rangle$ and $F_2 = \langle c, s_1, s_2; \rangle$ be free groups on the indicated generators. Let F be the free product with amalgamation of F_1 and F_2 given by

$$\langle b, r_1, r_2, c, s_1, s_2; r_1^{-1}b^2r_1 = s_1^{-1}cs_1, r_2^{-1}b^4r_2 = s_2^{-1}cs_2 \rangle.$$

We observe that b^2 is conjugate to b^4 in F. By Solitar's Theorem [10, Theorem 4.6], since $b \in R_1$, if b were conjugate in F to some $y \in F_1 \cap F_2$, then b would be conjugate in F_1 to one such $y \in F_1 \cap F_2$. Let N be the normal closure of $F_1 \cap F_2$ in F_1 and note that F_1/N is given by $\langle b, r_1, r_2; b^2 = 1 \rangle$ so that $b \notin N$. Hence, b is not conjugate in F_1 , and thus in F, to an element of $F_1 \cap F_2$.

PROOF OF THEOREM 1. We let P denote the set of stable letters of G. We may assume without loss of generality that x is P-cyclically reduced [11, p. 21].

If x contains a stable letter, then no cyclic permutation of x^l can be P-parallel to x^m [11, p.19] and so, by Collins Lemma [11, p. 21], x^l is not conjugate to x^m in G. Hence, x lies in B.

Since x^l is conjugate to x^m in G we may choose a reduced word y of the form

(*)
$$y = c_0 a_{i_1}^{e_1} c_1 a_{i_2}^{e_2} \cdots a_{i_n}^{e_n} c_n,$$

 $e_i \neq 0$, c_i a word in the generators of B (c_0,c_n possibly empty) such that $y^{-1}x^lyx^{-m} = 1$ in G. It follows from Britton's Lemma [11, p. 14] and our choice of y that $c_0^{-1}x^lc_0 = z^t$ where z is one of W_{i_1} , V_{i_1} . Hence, z^{-t} commutes with $c_0^{-1}x^lc_0$. Now B is a U-group (also called an R-group), so by the remarks [7, p. 244] $c_0^{-1}xc_0$ commutes with z. Now z is malnormal [3], [6] in B so that z

generates its own centralizer. Hence, $c_0^{-1} x c_0$ is a power of either W_i , or V_i .

Let L be a subgroup of K. By the generalized word (conjugacy) problem for L in K is meant the problem of determining for arbitrary w in K whether or not w is a member of (conjugate to an element of) K [5, p. 358].

LEMMA 1. Let B be a countable torsion-free group and $1 \neq w$ an element of B such that:

- (1) B has solvable word problem.
- (2) The generalized conjugacy problem for $\langle w \rangle$ in B is solvable. Then if $\langle w \rangle$ is a malnormal subgroup of B, the generalized word problem for $\langle w \rangle$ in B is solvable.

PROOF. Since $\langle w \rangle$ is a malnormal subgroup of B, we have for $s \neq 0$, if $x^{-1}w^sx = w^t$, then x is in w and, hence, s = t. We need only determine whether $1 \neq w'$ is an element of $\langle w \rangle$. By (2) we may decide whether w' is conjugate to an element of $\langle w \rangle$. Since B is countable, we may enumerate all conjugates of elements of $\langle w \rangle$, say u_1, u_2, \ldots . For each u_i we decide whether or not it is equal to w'. In this manner we produce a w^s conjugate to w'. If w' is a member of $\langle w \rangle$, $w' = w^t$. By the preceding remarks it follows that $w' = w^s$.

As a partial generalization of Lemma 9 [11, p. 24], we obtain, from Lemma 1 and Britton's Lemma,

LEMMA 2. Suppose G is an HNN group given by

$$\langle B, a_1, \ldots, a_k; \text{ rel } B, a_i^{-1} w_i a_i = v_i, i = 1, \ldots, k \rangle$$

where B is a torsion-free group, $w_i, v_i \neq 1$ in B for i = 1, ..., k and the following conditions are satisfied:

- (1) B has solvable word problem.
- (2) The generalized conjugacy problems for $\langle w_i \rangle$ and $\langle v_i \rangle$ in B are solvable where i = 1, ..., k.
 - (3) $\langle w_i \rangle$, $\langle v_i \rangle$ are malnormal subgroups of B for i = 1, ..., k.

Then G has solvable word problem.

Let $p_1, q_1, \ldots, p_k, q_k, l, m$ be nonzero integers. Call m reachable from l with respect to $p_1, q_1, \ldots, p_k, q_k$ if there is a sequence of integers beginning with l and ending with m such that successive terms l_i and l_{i+1} satisfy one of the following conditions:

- (1) $l_{i+1} = l_i(q_i/p_i)$ where l_i/p_i is integral.
- (2) $l_{i+1} = l_i(p_j/q_j)$ where l_i/q_j is integral.

The reachability problem for $p_1, q_1, \ldots, p_k, q_k$ is to decide for arbitrary integers l,m whether m is reachable from l. The reachability problem for $G(p_1, q_1, \ldots, p_k, q_k, w)$ will be understood to mean the reachability problem for its exponents. In particular, the reachability is solvable for those groups with unmeshed exponents.

LEMMA 3. Suppose $G(p_1, q_1, \ldots, p_k, q_k, w)$ satisfies the following conditions:

- (1) B is a finitely presented, residually free and 2-free group.
- (2) B has solvable conjugacy problem and the generalized conjugacy problem for $\langle w \rangle$ in B is solvable.
 - (3) The reachability problem for the exponents is solvable.

Then $G(p_1, q_1, \ldots, p_k, q_k, w)$ has solvable conjugacy problem.

PROOF. It follows from Lemma 2, that we may effectively P-reduce and, hence, effectively P-cyclically reduce words in the generators of the group. Without loss of generality we need only consider whether P-cyclically reduced words g and h are conjugate.

Suppose one of g and h contains a stable letter. We may decide whether g is conjugate to h by producing finitely many systems of exponential equations in the manner of [2, p. 268] and determining whether one such system has a solution.

Since B has solvable conjugacy problem we need only consider the case when g and h are words in the generators of B but not conjugate in B.

Suppose $x^{-1}gx = h$ where x is taken to be reduced and of the form (*) given in the proof of Theorem 1. Then it follows from Britton's Lemma that g is conjugate in B to some element w^s in $\langle w^{p_i} \rangle$ or $\langle w^{q_i} \rangle$ and h is conjugate in B to some element w^t in $\langle w^{p_i} \rangle$ or $\langle w^{q_i} \rangle$. Hence, both g and h are conjugate to powers of w and these powers are unique since $\langle w \rangle$ is a malnormal subgroup of B. By Lemma 2 we may produce such w^s and w^t when they exist.

Suppose $y^{-1}w^sy=w^t$ where y is taken to be reduced of the form (*). It follows from Britton's Lemma that there is a sequence w_1, \ldots, w_{n+1} such that $a_{i_j}^{-e_j}c_j^{-1}w_jc_ja_{i_j}^{e_j}=w_{j+1}$ where $j=1,\ldots,n$ and $w_1=w^s,w_{n+1}=w^t$. If $e_j=1$, then $c_j^{-1}w_jc_j$ is in $\langle w^{p_r}\rangle$, and if e=-1, then $c_j^{-1}w_jc_j$ is in $\langle w^{q_r}\rangle$. Since $\langle w\rangle$ is malnormal in B, we have $c_1^{-1}w^sc_1$ is in $\langle w\rangle$ implying c_1 is in $\langle w\rangle$ and so w_2 is in $\langle w\rangle$. In general, c_j,w_j are in $\langle w\rangle$ for all j. Now choose $z=a_{i_1}^{e_1}\cdots a_{i_n}^{e_n}$ and observe that $z^{-1}w^sz=w^t$. Hence, t must be reachable from s with respect to the exponents of the group.

Therefore, we may determine when words g and h in the generators of B are conjugate in $G(p_1, q_1, \ldots, p_k, q_k, w)$ by producing the appropriate w^s , w^t when they exist and determining whether t is reachable from s.

PROOF OF THEOREM 2. When B is the free product of finitely generated free groups with infinite cyclic amalgamated subgroups, then B has solvable conjugacy problem [8]. It is an immediate consequence of [2, Lemma 3] that the generalized conjugacy problem for $\langle W \rangle$ in B is solvable. Since B is residually free and 2-free and the exponents are unmeshed, it follows from Lemma 3 that $G(p_1,q_1,\ldots,p_k,q_k,W)$ has solvable conjugacy problem.

The author wishes to thank the referee for many constructive suggestions.

REFERENCES

- 1. M. Anshel, Non-Hopfian groups with fully invariant kernels. II, J. Algebra 24 (1973), 473—485. MR 47 #1960.
- 2. M. Anshel and P. Stebe, The solvability of the conjugacy problem for certain HNN groups, Bull. Amer. Math. Soc. 80 (1974), 266—270.
- 3. B. Baumslag, Generalized free products whose two-generator subgroups are free, J. London Math. Soc. 43 (1968), 601—606. MR 38 #2217.
 - 4a. G. Baumslag, On generalised free products, Math. Z. 78 (1962), 423—438. MR 25 #3980.
- 4b. ——, Lecture notes in nilpotent groups, CBMS Regional Conf. Ser. in Math., no. 2, Amer. Math. Soc., Providence, R.I., 1971. MR 44 #315.
- 5. C. R. J. Clapham, The conjugacy problem for a free product with amalgamation, Arch. Math. (Basel) 22 (1971), 358—362. MR 46 #5464.
- 6. A. Karrass and D. Solitar, The free product of two groups with a malnormal amalgamated subgroup, Canad. J. Math. 23 (1971), 933—959. MR 47 #3541.

- 7. A. G. Kuroš, *Theory of groups*, 2nd ed., GITTL, Moscow, 1953; English transl., Vol. II, Chelsea, New York, 1960. MR 15, 501; 22 #727.
- 8. S. Lipschutz, Generalization of Dehn's result on the conjugacy problem, Proc. Amer. Math. Soc. 17 (1966), 759—762. MR 33 #5706.
- 9. W. Magnus, Noneuclidean tesselations and their groups, Academic Press, New York and London, 1974.
- 10. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentation of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617.
- 11. C. F. Miller III, On group-theoretic decision problems and their classification, Ann. of Math. Studies, no. 68, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1971. MR 46 #9147.

Department of Computer Sciences, The City College of the City University of New York, New York, New York 10031