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A CHARACTERIZATION OF 75-SLOWLY
VARYING FUNCTIONS

STEVEN BLOOM

Abstract. A measurable function <j> > 0 that satisfies the limit condition

limx_>x>i(p{x + tfix))/fix)) = 1 for all t is said to be B-slowly varying. If <p

is continuous, this limit is shown to hold uniformly for t in compact sets, and

an integral representation is derived.

Recent papers by Moh [5] and Peterson [6] deal with a generalization, due

to Beurling, of Wiener's Tauberian Theorem.

Theorem 1.   Let <p be a positive function satisfying

lim <K* + '<p(x)) = j foreachfixed
x->oo (fix)

and

(2) lim 2« = 0.
x—>oo     X

LetK G L1 satisfy S-n A"(/)e_''x' dt # Ofor each realX, and let f G L00. If there

exists a constant A such that

(3)        lim r /o)*r^zj~i-^- = a r k^a,
V   ' x^oo ./-ooJy'     |_ (p(x) J <p(x) ^-oo      V '

?/zen

(4)        lim   f°° /(O^r^rrl-^v = ^ f°°  /**(*)*   V a//7/ G L1.
x-^oo -'-oo J L <PW J <pix) -/-oo

Wiener's Theorem is the special case, <p = 1, of Theorem 1.

Definition. A positive, measurable function <p that satisfies (1) is 7?-slowiy

varying, and B denotes the class of all such functions. If <p satisfies (1)

uniformly for t in every bounded interval (a,r>), then tp is uniformly 7i-slowly

varying, denoted <p G Bu.

Theorem 2.    If cp G B is continuous, then <p G Bu.

Proof. We prove this for l between zero and one. The argument for an

arbitrary interval ia,b) follows similarly.

Suppose that <p is not uniformly 73-slowly varying. Then there is an

e G (0,1) and sequences {?„} c (0,1) and {x„} tending to infinity, such that
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(5) \<p(xn + tntp(xn))/tp(xn) - 1| > e       in = 1,2,...).

The function /,(/) = tp(xn + ttp(xn))/tp(xn) - 1 is continuous and

lim„_^00|/l(z')| = 0 for fixed t. So there is an integer N and a sequence

{A„} C (0,1) such that

(6) \tp(yn)/tp(xn)-l\=e        (n>N),

where y„ = xn + A„<p(x:„). Set

Vn = (A G(0,2 + £): |/„(A)|<e/2},

H£ = {M G (0,1): \cp(yn + ptp(yn))/tV(yn) - 1|< e/2(l + e)},

W'„ = {X = A„ + M<p(^)Mx„): p G H£}.

These sets are Lebesgue measurable, with

(7) lim gil(^) = 2 + e,     lim 91l(^) = 1.
v   ' n—»oo n—*oo

(Korevaar, Van Aardenne-Ehrenfest, DeBruijn [4] cite De Le Vallee Poussin

[7] for this. One may also apply EgorofFs Theorem to fn(t).) W'„ C (0,2 + e), •

and 9IL(»f;) >(1 - t)9l(«J) so that

(8) lim inf 911(^1) > 1 - e.
v   ' zz—>00

For A G W'n,

/9)     I ?(■*„ + Xtp(x„))      tp(yn)    =    tp(y„)        tp(yn + /ty(^,))      } e

<p(jc„) qp(x„) (p(x„) <p(>z„) 2

so that

(10) W(xn + Xtp(xn))Mx„) - 1| > e/2

and, in particular, A £ Vn. Thus ^ n W; = 0, I£, W; C (0,2 + e), so that

(11) 2 + £ > lim inf 9lt(l£ U IT;) > lim inf(9lt(fj;) + <DTl(W;)) > 3,
^ zz zz

or e > 1, which is impossible.

Slowly varying functions.

Definition. A positive, measurable function g is slowly varying if it satisfies

the limit condition

(12) lim g^,+, *' = 1    for each fixed t.
*^oo     g(x)

Let K be the class of all slowly varying functions.

For our purposes, K serves as an analogue to B and motivates much of our

work.

Theorem 3.    Let g be a slowly varying function.  Then g satisfies (12)

uniformly for t in bounded intervals, and there exist functions c(x) and t(x), e
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continuous, lim^^ c(x) = c G (0, oo), lim.c^h00€(x) = 0 such that

(13) gix) = cix)exp fo   tis)ds.

Karamata [3] proved this theorem for g continuous. More recent work has

weakened the hypothesis from continuity to measurability (see, for example,

[1], [21 and [4]).

Relation between K and Bu. There is a similarity between the class of

uniformly 73-slowly varying functions and the class K, for a function <p G Bu

that is bounded away from zero on an appropriately chosen sequence is slowly

varying:

Theorem 4. Let <p G Bu. If there is a sequence {xn) —* oo, and constants m,

M, 8 greater than zero such that

(i) m < xn+x - x„ < M in = 1,2,...),

(ii) <p(x„)>o> = 1,2,...)

then tp G K.

Proof. For each « = 1,2,..., define the functionpnix) for x G [xn,xn+i]

by

Then 0 < />„(jc) < \,pnixn) = 0 and/>„(x„+1) = 1. Moreover, the functions

pn are continuously differentiable,

77" IT
0 < p'nix) < Tr---^ < y-,    and   /z;(x„) = /^K+i) = 0.

Set / = log <p and

(15) /,(x) = /(x„) + Uix„+X) - fix„)}p„ix)        ixn < x < xn+1).

The function/, is defined for all x > Xj, it is continuously differentiable, and

satisfies the estimates

|/'(x)| < in/m)\fix„+l)-fixn)\

and

|/,0) -f(x)\ < \fix) -fixj + \fixn+x) -fixj

where xn < x < x„+1. Thus/, and/ —/tend to zero as x tends to infinity

provided

(16) lim \fix) -fixn)\ =0       ix„ < x < x„+1).
v     ' x->oo

For x„ < x < xn+!, there is a C G [0, M/8] such that x = xn 4- f<p(x„). Then
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07) |/(x)-/(,J| = |log^"^"))|->0,

which gives (16). Choose e(x) between zero and x, so that e is continuous,

«(*i) = /i(*i), andSox <s)ds = /,(*,). Set

(18)        c(x) = f\(x)       (x~> xx),   c(x) = (p(x)exp(-^   e(s)zft).

Then for x > *,, c(x) = exp[/(x) ~/i(x)] -> 1, and <p satisfies (13). It is a

simple matter to verify that such functions are elements of K.

An integral representation. Motivating examples for the class of fi-slowly

varying functions are functions such as xp (p < 1) and e~x. The derivatives

of these functions tend to zero. This does not hold in general, as with

V    ' ^ '       U^O +x"1/4sinx),       x > 1.

Here tp G 7?„, but lim sup^^o/^) ^ 0.

But these examples suggest an analogue for the class B of Karamata's

representation (13).

Theorem 5. Let tp G Bu. Then there are functions c(x) and e(x), € contin-

uous, 0 < c = \imx^,aoc(x) < oo, and\imx_,xi(x) = 0, iwc/z zTzaz*

(20) tp(x) = c(x)foX e(s)ds.

Conversely, if a positive, measurable function tp has the representation (20) with

e continuous, tending to zero and c(x) tending to a positive limit, then tp G Bu.

In particular, any tp G Bu satisfies (2).

The form of (20) was conjectured by Daniel Shea.

As an example, the function m given by (19) satisfies (20) with c(x)

= 1 + x~l/Um x, e(x) = \x-{/1.

We require some additional machinery before proving the theorem. Define

inductively at x a sequence {x„} by

(21) x0 = x,   xn = xn_x + <p(x„_.).

For tp G Bu, this sequence virtually characterizes the behavior of tp provided

the x„ become infinite.

Lemma . Let tp G Bu. Then there is an x such that for any x > x and the

sequence {xn} defined for x by (21), lim„_>00x„ = oo.

Proof. Choose x so that for x > x, t G [-1,1],

(22) tp(x + ttp(x)) > i-tpix).

Suppose the Lemma is false. Then there is an x > x with {x„} given by (21)

such that lim„_>00 xn =- p < oo. This limit exists, of course, since the sequence

{xn}  increases   monotonically.   Now,   xn = x + 2jt=i (p(xk_x).   The   series
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2 ^(x^) converges and, in particular, \im„_,x <pix„) = 0. Now, p > x, so by

(22),

(23) <piy) > x2cpip)       (p - <pip) <y <p + <p(p)).

Thus

(24) ° = um <p(xn) > nm inf <p(y) > 2<P(/>),
v     ' n—> oo J'->/>

which contradicts the positivity of <p.

Proof of Theorem 5. Let x be as in the Lemma and define {x„} by (21) for

some x0 > x. Then \imn_,o0xn = oo. Set

(25) *.M = *-¥{' + Sln[^j(^ - ^" - «H )

(x„ < X < ^n+l).

/?„ is continuously differentiable on [x„,x„+1].

0 < Pn(x) < fan)'    Pn(xn) = °>    Pn(xn+l) = <?(*/,)>

0 < p'„ix) < tt/2,    and   /»;(xn) = p'„ix„+x) = 0.

Set

(26) fix) = <p(x„) + 7^(*)[(<pCVm) - <*>(*„ ))/<?(*,,)]       (x„ < x < x„+1).

Then / is continuously differentiable, and

(27) |/'(x)| < (V2)|(p(x„ + cpixn))/<pixn) - 1| -» 0   as x -»• oo.

Finally, for x G [x„,x„+i], there is a I 6 [0,1] such that x = x„ + z*(p(x„).

Thus

<P(*W) Tj _ I <p(*z, + <?(■*„)) _ j I] < (M
cp(x„ + /<p(x„)) L <p(x„) I J ^ <p(x)

(28)
< <p(*n) Tj + I <p(xn + tp(x„)) _ j I

^ <p(x„ + f<p(x„)) L <p(*zz) U'

Hence, lim;<.^00/(x)/(p(x) = 1. Define e(x) between zero and x0 so that e is

continuous, e(x0) = f\x0), and J"0*° e(s) <iy = /(x0). For x > x0, set e(x)

=/'(x). Assume further that e(x) > 0 for x G [0,x0]. Set c(x)

= <p{x)/Sq eis)ds. Then (20) holds, e is continuous, and lim^^.^ e(x) = 0. We

need only show that c(x) tends to a finite positive limit. But for x > x0,

c(x) = <p(x)//(x), which tends to one. The converse is easily verified.

Remarks. 1. Measurability of a slowly varying function g is sufficient to

assure that the limit condition in (12) holds uniformly for t in finite intervals.

An open problem at present is whether or not the hypothesis for Theorem 2

can be similarly weakened.
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The contradiction in the proof of Theorem 2 was obtained by constructing

sets W'n of measure bounded below and all contained in a finite interval.

Since

91t(W;) > mf(tp(yn)/tp(xn)),    and    W'n C (0,1 + sup(m(7„)/«p(x„))),
" n

it is impossible for tp G B to have constants m, M, 8 > 0 and sequences

{;„} C (0,1), {x„}^oo, such that \tp(yn)/tp(xn) - 1| > 5 and w

< <p(>'zi)/<p(-*zz) < ^> whereyn = xn + t„tp(xn). For continuous functions, the

second of these inequalities follows from the first. Measurable functions are

not as simple, however. Consider, for example,

(M) *.»-{*■  ;>;>»;

For each fixed t > 0, \imx^,Qf(x, t) = 0, but for any e > 0, if we choose

sequences {xn} -» 0, {t„} so that f(xn,tn) > « (n = 1,2,3,...), then

limn_>00/(jc„,i'„) = oo.

Let 8„ = <p(yn)/<p(x„), and suppose lim,,^^^ = oo. What can be said

about the sequence {8n} relative to <p?

Fix t G [1,2] and let k be an integer, k > 4. Let e G (0,21/fc - 1) be given,

and set

1^(0 = {p G (*„,*« + 0: M*„ + w(*n))/<p(*n) - 1|< «},

0,(0 = {A G [0,2/]: |<p(.y„ + Xtp(yn))/tp(yn) - 1| > 1/4}.

Then

(30) lim 9lt(F£(0) = f,     lim gil(f2„(0) = 0.
v      7 zz—>oo zz—>oo

There is an x such that for x > x,

(31) \cp(x + ttp(x))/tp(x) - 1|< c.

Suppose that z5n G [/c — 1,/c] for some xn > x. For A! G ^(r), define A by

(32) A; = A,-_, + ttp(x„ + Xj_xtp(xn))/tp(x„)       (2 < j < fc).

Then

qO,, + ((\ - tn)/8n)tp(yn)) _ tp(xn + Ay(p(jcn))

(33) vUi) 5„<p(xn)

< (1 + ey«-' < (1 + e)^-1 < 2/(* - 1).

Set Q'„ = {(Xj - t„)/8n: A, G Vn(t), Ay defined by (32)}. Then

,    ^ (A, - A._,)(A: - l)9H(k;)      t(k - 1)(1 - e)
(34) giL(e;) > inf ̂ -^IZi__^A^ > ^E-'A'      e%(T/(/)).

But g; c C„W for all n = 1, 2, ..., which contradicts (30).
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Thus, given {/„} C (0,1), fx„} -» oo such that 8„ = <jp(x„ + /„<p(x„))/<p(xn)

-» oo, let kin) be the least integer greater than 8n, -[—8A. We conclude that

(35) {/ G [1,2] = |^±M^) - l| < iW* - 1; for all x > x„} = 0,

and we have a uniform bound for the rate of convergence in the 7?-slowly

varying limit. A similar argument is applicable when Yimn^,o08n = 0.

2. Theorem 4 considers uniformly Ti-slowry varying functions bounded

away from zero on appropriate sequences. Suppose we add a positive constant

to an element in Bu. What can we conclude about this translate?

Theorem 6.    Let <p G Bu, F(x) = (p(x) + e, € > 0. Then T G Bu n K.

Proof. Fix t. Then

(36) lim  T{x~t\tT(x)) =  Hm ' + ** +,'«<*» = 1,
x->oo F(x) x->oo £ + (pix)

and this limit holds uniformly for t in finite intervals. In the proof of Theorem

4, set x„ = n, and fix) = log[F(x - e(x - «)/T(«))] (ti < x < « + 1). De-

fine / by (15) and let f = (x - «)/F(«) for x G [n,n + 1]. Then 0 < /

< l/Tin) < 1/e, so forx < [n,n + 1],

z-.-7\    i ct \      a m        i      T(x - it) .      T(« - ef + er(«))
(37) |/(x) -/(«)|=   log    v      \        =   lo§-j7^)-    ^°-

So (16) holds, and F(x - e(x - n)/Tin)) G 7C, with

(38) t(x-€ ^ ) = c(x) exp j^ * <*) A.

rtov ..    r(x - t(x - w)/r(w) + /) _

(39) i^ n* - <x - «)/r(«)) - L

and this limit holds uniformly for / G [0,1], so that for t = «(x — «)/F(«),

z* ̂  F(x)
qW = 7=7-j-WtY » -» 1    as x -> oo.

7|x — e(x — rt)/7/(«))

Therefore,

(40) F(x) = c, (x)c(x) exp J * e(j) ds,

and so 71 G K.

Let {x„} be a sequence tending to infinity, and set

{*„„} = [x„ ■ (p(x„) < 1},    {x^} = fx„: <p(x„) > 1}.

Fix /, and set

Ka = tT(x„J,    P„fi = / + te/<pix„fi).
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Then X„a, pn   G [t, t + tt]. Let tj > 0 be given. Then there are integers Nx and

N2 such that

L\     - 1   < V       (x > xN]; A G [t, t + e]),

(41)
tp(x + ptp(x))       , ,    _ r ..
^-(^)^_1   <*!        (x> xNi;p £[t,t + te\),

since 7 G AT and tp G 7?u. Let V = ma\{Nx,N2}. Then, for n ^ N, tp(xn) > 1,

r(xn + tT(xn)) =   <jp(jc„ + /x„(jp(jcn)) + e

(42) r(*») vfo) + «

< wW/M*,,) + «)< ij.

While if tp(x„) < 1,

r(xn + z-r(xj) n^n + A„)
(43) —no-l ~ ~^o~~l <%

The bound in (41) holds uniformly for t in finite intervals, so T G Bu, which

completes the proof.

I would like to express my gratitude to Daniel Shea, who brought these

problems to my attention.
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