A CHARACTERIZATION OF *B*-SLOWLY VARYING FUNCTIONS

STEVEN BLOOM

ABSTRACT. A measurable function $\varphi > 0$ that satisfies the limit condition $\lim_{x\to\infty} (\varphi(x + t\varphi(x))/\varphi(x)) = 1$ for all t is said to be B-slowly varying. If φ is continuous, this limit is shown to hold uniformly for t in compact sets, and an integral representation is derived.

Recent papers by Moh [5] and Peterson [6] deal with a generalization, due to Beurling, of Wiener's Tauberian Theorem.

THEOREM 1. Let φ be a positive function satisfying

(1)
$$\lim_{x \to \infty} \frac{\varphi(x + t\varphi(x))}{\varphi(x)} = 1 \quad \text{for each fixed } t,$$

and

(2)
$$\lim_{x\to\infty}\frac{\varphi(x)}{x}=0.$$

Let $K \in L^1$ satisfy $\int_{-\infty}^{\infty} K(t)e^{-i\lambda t} dt \neq 0$ for each real λ , and let $f \in L^{\infty}$. If there exists a constant A such that

(3)
$$\lim_{x \to \infty} \int_{-\infty}^{\infty} f(t) K\left[\frac{x-t}{\varphi(x)}\right] \frac{dt}{\varphi(x)} = A \int_{-\infty}^{\infty} K(t) dt,$$

then

(4)
$$\lim_{x \to \infty} \int_{-\infty}^{\infty} f(t) H\left[\frac{x-t}{\varphi(x)}\right] \frac{dt}{\varphi(x)} = A \int_{-\infty}^{\infty} H(t) dt \text{ for all } H \in L^{1}.$$

Wiener's Theorem is the special case, $\varphi \equiv 1$, of Theorem 1.

DEFINITION. A positive, measurable function φ that satisfies (1) is *B*-slowly varying, and *B* denotes the class of all such functions. If φ satisfies (1) uniformly for *t* in every bounded interval (*a*,*b*), then φ is uniformly *B*-slowly varying, denoted $\varphi \in B_u$.

THEOREM 2. If $\varphi \in B$ is continuous, then $\varphi \in B_u$.

PROOF. We prove this for i between zero and one. The argument for an arbitrary interval (a,b) follows similarly.

Suppose that φ is not uniformly *B*-slowly varying. Then there is an $\epsilon \in (0, 1)$ and sequences $\{t_n\} \subset (0, 1)$ and $\{x_n\}$ tending to infinity, such that

Received by the editors September 30, 1974.

AMS (MOS) subject classifications (1970). Primary 28A12; Secondary 40E05.

(5)
$$|\varphi(x_n+t_n\varphi(x_n))/\varphi(x_n)-1| \ge \epsilon \qquad (n=1,2,\ldots).$$

The function $f_n(t) = \varphi(x_n + t\varphi(x_n))/\varphi(x_n) - 1$ is continuous and $\lim_{n\to\infty} |f_n(t)| = 0$ for fixed t. So there is an integer N and a sequence $\{\lambda_n\} \subset (0, 1)$ such that

(6)
$$|\varphi(y_n)/\varphi(x_n) - 1| = \epsilon \quad (n \ge N),$$

where $y_n = x_n + \lambda_n \varphi(x_n)$. Set

$$\begin{split} V_n &= \{\lambda \in (0, 2 + \epsilon) \colon |f_n(\lambda)| < \epsilon/2\}, \\ W_n &= \{\mu \in (0, 1) \colon |\varphi(y_n + \mu\varphi(y_n))/\varphi(y_n) - 1| < \epsilon/2(1 + \epsilon)\}, \\ W'_n &= \{\lambda = \lambda_n + \mu\varphi(y_n)/\varphi(x_n) \colon \mu \in W_n\}. \end{split}$$

These sets are Lebesgue measurable, with

(7)
$$\lim_{n \to \infty} \mathfrak{M}(V_n) = 2 + \epsilon, \quad \lim_{n \to \infty} \mathfrak{M}(W_n) = 1.$$

(Korevaar, Van Aardenne-Ehrenfest, DeBruijn [4] cite De Le Vallee Poussin [7] for this. One may also apply Egoroff's Theorem to $f_n(t)$.) $W'_n \subset (0, 2 + \epsilon)$, and $\mathfrak{M}(W'_n) \ge (1 - \epsilon)\mathfrak{M}(W_n)$ so that

(8)
$$\liminf_{n\to\infty} \mathfrak{M}(W'_n) \ge 1-\epsilon$$

For $\lambda \in W'_n$,

(9)
$$\left|\frac{\varphi(x_n+\lambda\varphi(x_n))}{\varphi(x_n)}-\frac{\varphi(y_n)}{\varphi(x_n)}\right| = \left|\frac{\varphi(y_n)}{\varphi(x_n)}\right| \cdot \left|\frac{\varphi(y_n+\mu\varphi(y_n))}{\varphi(y_n)}-1\right| < \frac{\epsilon}{2}$$

so that

(10)
$$|\varphi(x_n + \lambda \varphi(x_n))/\varphi(x_n) - 1| > \epsilon/2$$

and, in particular, $\lambda \notin V_n$. Thus $V_n \cap W'_n = \emptyset$, V_n , $W'_n \subset (0, 2 + \epsilon)$, so that

(11)
$$2 + \epsilon \ge \liminf_{n} \mathfrak{M}(V_n \cup W'_n) \ge \liminf_{n} \mathfrak{M}(V_n) + \mathfrak{M}(W'_n) \ge 3$$

or $\epsilon \ge 1$, which is impossible.

Slowly varying functions.

DEFINITION. A positive, measurable function g is slowly varying if it satisfies the limit condition

(12)
$$\lim_{x \to \infty} \frac{g(x+t)}{g(x)} = 1 \quad \text{for each fixed } t.$$

Let K be the class of all slowly varying functions.

For our purposes, K serves as an analogue to B and motivates much of our work.

THEOREM 3. Let g be a slowly varying function. Then g satisfies (12) uniformly for t in bounded intervals, and there exist functions c(x) and $\epsilon(x)$, ϵ

continuous, $\lim_{x\to\infty} c(x) = c \in (0,\infty)$, $\lim_{x\to\infty} \epsilon(x) = 0$ such that

(13)
$$g(x) = c(x) \exp \int_0^x \epsilon(s) \, ds.$$

Karamata [3] proved this theorem for g continuous. More recent work has weakened the hypothesis from continuity to measurability (see, for example, [1], [2], and [4]).

Relation between K and B_u . There is a similarity between the class of uniformly *B*-slowly varying functions and the class K, for a function $\varphi \in B_u$ that is bounded away from zero on an appropriately chosen sequence is slowly varying:

THEOREM 4. Let $\varphi \in B_u$. If there is a sequence $\{x_n\} \to \infty$, and constants m, M, δ greater than zero such that

(i) $m \leq x_{n+1} - x_n \leq M$ (n = 1, 2, ...), (ii) $\varphi(x_n) \geq \delta$ (n = 1, 2, ...)then $\varphi \in K$.

PROOF. For each n = 1, 2, ..., define the function $p_n(x)$ for $x \in [x_n, x_{n+1}]$ by

(14)
$$p_n(x) = \frac{1}{2} \left(1 + \sin\left(\frac{\pi}{2} \frac{(2x - x_{n+1} - x_n)}{x_{n+1} - x_n}\right) \right).$$

Then $0 \le p_n(x) \le 1$, $p_n(x_n) = 0$ and $p_n(x_{n+1}) = 1$. Moreover, the functions p_n are continuously differentiable,

$$0 \leq p'_n(x) \leq \frac{\pi}{2(x_{n+1} - x_n)} \leq \frac{\pi}{2m}$$
, and $p'_n(x_n) = p'_n(x_{n+1}) = 0$.

Set $f = \log \varphi$ and

(15)
$$f_1(x) = f(x_n) + [f(x_{n+1}) - f(x_n)]p_n(x)$$
 $(x_n \le x \le x_{n+1}).$

The function f_1 is defined for all $x \ge x_1$, it is continuously differentiable, and satisfies the estimates

$$|f'(\mathbf{x})| \leq (\pi/m)|f(\mathbf{x}_{n+1}) - f(\mathbf{x}_n)|$$

and

$$|f_1(x) - f(x)| \le |f(x) - f(x_n)| + |f(x_{n+1}) - f(x_n)|$$

where $x_n \leq x \leq x_{n+1}$. Thus f'_1 and $f_1 - f$ tend to zero as x tends to infinity provided

(16)
$$\lim_{x \to \infty} |f(x) - f(x_n)| = 0 \qquad (x_n \le x \le x_{n+1}).$$

For $x_n \leq x \leq x_{n+1}$, there is a $t \in [0, M/\delta]$ such that $x = x_n + t\varphi(x_n)$. Then

STEVEN BLOOM

(17)
$$|f(x) - f(x_n)| = \left|\log \frac{\varphi(x_n + t\varphi(x_n))}{\varphi(x_n)}\right| \to 0,$$

which gives (16). Choose $\epsilon(x)$ between zero and x, so that ϵ is continuous, $\epsilon(x_1) = f'_1(x_1)$, and $\int_0^{x_1} \epsilon(s) ds = f_1(x_1)$. Set

(18)
$$\epsilon(x) = f'_1(x)$$
 $(x \ge x_1), \quad c(x) = \varphi(x) \exp\left(-\int_0^x \epsilon(s) ds\right).$

Then for $x \ge x_1$, $c(x) = \exp[f(x) - f_1(x)] \to 1$, and φ satisfies (13). It is a simple matter to verify that such functions are elements of K.

An integral representation. Motivating examples for the class of *B*-slowly varying functions are functions such as x^p (p < 1) and e^{-x} . The derivatives of these functions tend to zero. This does not hold in general, as with

(19)
$$\varphi(x) = \begin{cases} 1 + \sin(1), & 0 \le x \le 1, \\ x^{1/2}(1 + x^{-1/4}\sin x), & x \ge 1. \end{cases}$$

Here $\varphi \in B_u$, but $\limsup_{x\to\infty} \varphi'(x) \neq 0$.

But these examples suggest an analogue for the class B of Karamata's representation (13).

THEOREM 5. Let $\varphi \in B_u$. Then there are functions c(x) and $\epsilon(x)$, ϵ continuous, $0 < c = \lim_{x \to \infty} c(x) < \infty$, and $\lim_{x \to \infty} \epsilon(x) = 0$, such that

(20)
$$\varphi(x) = c(x) \int_0^x \epsilon(s) \, ds$$

Conversely, if a positive, measurable function φ has the representation (20) with ϵ continuous, tending to zero and c(x) tending to a positive limit, then $\varphi \in B_u$. In particular, any $\varphi \in B_u$ satisfies (2).

The form of (20) was conjectured by Daniel Shea.

As an example, the function φ given by (19) satisfies (20) with $c(x) = 1 + x^{-1/4} \sin x$, $\epsilon(x) = \frac{1}{2}x^{-1/2}$.

We require some additional machinery before proving the theorem. Define inductively at x a sequence $\{x_n\}$ by

(21)
$$x_0 = x, \quad x_n = x_{n-1} + \varphi(x_{n-1}).$$

For $\varphi \in B_{\mu}$, this sequence virtually characterizes the behavior of φ provided the x_n become infinite.

LEMMA. Let $\varphi \in B_u$. Then there is an \tilde{x} such that for any $x \ge \tilde{x}$ and the sequence $\{x_n\}$ defined for x by (21), $\lim_{n\to\infty} x_n = \infty$.

PROOF. Choose \tilde{x} so that for $x \ge \tilde{x}$, $t \in [-1, 1]$,

(22)
$$\varphi(x + t\varphi(x)) \ge \frac{1}{2}\varphi(x).$$

Suppose the Lemma is false. Then there is an $x \ge \tilde{x}$ with $\{x_n\}$ given by (21) such that $\lim_{n\to\infty} x_n = p < \infty$. This limit exists, of course, since the sequence $\{x_n\}$ increases monotonically. Now, $x_n = x + \sum_{k=1}^{n} \varphi(x_{k-1})$. The series

 $\sum \varphi(x_k)$ converges and, in particular, $\lim_{n\to\infty} \varphi(x_n) = 0$. Now, $p \ge \tilde{x}$, so by (22),

(23)
$$\varphi(y) \ge \frac{1}{2}\varphi(p) \qquad (p - \varphi(p) \le y \le p + \varphi(p)).$$

Thus

(24)
$$0 = \lim_{n \to \infty} \varphi(x_n) \ge \liminf_{y \to p} \varphi(y) \ge \frac{1}{2}\varphi(p),$$

which contradicts the positivity of φ .

PROOF OF THEOREM 5. Let \tilde{x} be as in the Lemma and define $\{x_n\}$ by (21) for some $x_0 \ge \tilde{x}$. Then $\lim_{n \to \infty} x_n = \infty$. Set

(25)
$$p_n(x) = \frac{\varphi(x_n)}{2} \left(1 + \sin\left[\frac{\pi}{2\varphi(x_n)}(2x - 2x_n - \varphi(x_n))\right] \right) (x_n \le x \le x_{n+1}).$$

 p_n is continuously differentiable on $[x_n, x_{n+1}]$.

$$0 \le p_n(x) \le \varphi(x_n), \quad p_n(x_n) = 0, \quad p_n(x_{n+1}) = \varphi(x_n),$$

$$0 \le p'_n(x) \le \pi/2, \quad \text{and} \quad p'_n(x_n) = p'_n(x_{n+1}) = 0.$$

Set

(26)
$$f(x) = \varphi(x_n) + p_n(x)[(\varphi(x_{n+1}) - \varphi(x_n))/\varphi(x_n)]$$
 $(x_n \le x \le x_{n+1}).$

Then f is continuously differentiable, and

(27)
$$|f'(x)| \leq (\pi/2)|\varphi(x_n + \varphi(x_n))/\varphi(x_n) - 1| \to 0 \text{ as } x \to \infty.$$

Finally, for $x \in [x_n, x_{n+1}]$, there is a $t \in [0, 1]$ such that $x = x_n + t\varphi(x_n)$. Thus

(28)
$$\frac{\varphi(x_n)}{\varphi(x_n + t\varphi(x_n))} \left[1 - \left| \frac{\varphi(x_n + \varphi(x_n))}{\varphi(x_n)} - 1 \right| \right] \leq \frac{f(x)}{\varphi(x)}$$
$$\leq \frac{\varphi(x_n)}{\varphi(x_n + t\varphi(x_n))} \left[1 + \left| \frac{\varphi(x_n + \varphi(x_n))}{\varphi(x_n)} - 1 \right| \right].$$

Hence, $\lim_{x\to\infty} f(x)/\varphi(x) = 1$. Define $\epsilon(x)$ between zero and x_0 so that ϵ is continuous, $\epsilon(x_0) = f'(x_0)$, and $\int_0^{x_0} \epsilon(s) ds = f(x_0)$. For $x \ge x_0$, set $\epsilon(x) = f'(x)$. Assume further that $\epsilon(x) > 0$ for $x \in [0, x_0]$. Set $c(x) = \varphi(x)/\int_0^x \epsilon(s) ds$. Then (20) holds, ϵ is continuous, and $\lim_{x\to\infty} \epsilon(x) = 0$. We need only show that c(x) tends to a finite positive limit. But for $x \ge x_0$, $c(x) = \varphi(x)/f(x)$, which tends to one. The converse is easily verified.

Remarks. 1. Measurability of a slowly varying function g is sufficient to assure that the limit condition in (12) holds uniformly for t in finite intervals. An open problem at present is whether or not the hypothesis for Theorem 2 can be similarly weakened.

STEVEN BLOOM

The contradiction in the proof of Theorem 2 was obtained by constructing sets W'_n of measure bounded below and all contained in a finite interval.

Since

$$\mathfrak{M}(W'_n) \ge \inf_n (\varphi(y_n)/\varphi(x_n)), \text{ and } W'_n \subset (0, 1 + \sup_n (\varphi(y_n)/\varphi(x_n))),$$

it is impossible for $\varphi \in B$ to have constants m, M, $\delta > 0$ and sequences $\{t_n\} \subset (0,1), \{x_n\} \to \infty$, such that $|\varphi(y_n)/\varphi(x_n) - 1| \ge \delta$ and $m \le \varphi(y_n)/\varphi(x_n) \le M$, where $y_n = x_n + t_n \varphi(x_n)$. For continuous functions, the second of these inequalities follows from the first. Measurable functions are not as simple, however. Consider, for example,

(29)
$$f(x,t) = \begin{cases} 1/x, & x \ge t > 0, \\ 0, & 0 < x < t. \end{cases}$$

For each fixed t > 0, $\lim_{x\to 0} f(x,t) = 0$, but for any $\epsilon > 0$, if we choose sequences $\{x_n\} \to 0$, $\{t_n\}$ so that $f(x_n, t_n) \ge \epsilon$ (n = 1, 2, 3, ...), then $\lim_{n\to\infty} f(x_n, t_n) = \infty$.

Let $\delta_n = \varphi(y_n)/\varphi(x_n)$, and suppose $\lim_{n\to\infty} \delta_n = \infty$. What can be said about the sequence $\{\delta_n\}$ relative to φ ?

Fix $t \in [1, 2]$ and let k be an integer, $k \ge 4$. Let $\epsilon \in (0, 2^{1/k} - 1)$ be given, and set

$$V_n(t) = \{ \mu \in (t_n, t_n + t) : |\varphi(x_n + \mu\varphi(x_n))/\varphi(x_n) - 1| < \epsilon \},\$$

$$Q_n(t) = \{ \lambda \in [0, 2t] : |\varphi(y_n + \lambda\varphi(y_n))/\varphi(y_n) - 1| > 1/4 \}.$$

Then

(30)
$$\lim_{n\to\infty} \mathfrak{M}(V_n(t)) = t, \quad \lim_{n\to\infty} \mathfrak{M}(Q_n(t)) = 0.$$

There is an \tilde{x} such that for $x \ge \tilde{x}$,

$$|\varphi(x+t\varphi(x))/\varphi(x)-1| < \epsilon.$$

Suppose that $\delta_n \in [k-1,k]$ for some $x_n \ge x$. For $\lambda_1 \in V_n(t)$, define λ_j by

(32)
$$\lambda_j = \lambda_{j-1} + t\varphi(x_n + \lambda_{j-1}\varphi(x_n))/\varphi(x_n) \quad (2 \le j \le k).$$

Then

(33)
$$\frac{\varphi(y_n + ((\lambda_j - t_n)/\delta_n)\varphi(y_n))}{\varphi(y_n)} = \frac{\varphi(x_n + \lambda_j\varphi(x_n))}{\delta_n\varphi(x_n)}$$
$$< (1 + \epsilon)^j \delta_n^{-1} \leqslant (1 + \epsilon)^k \delta_n^{-1} \leqslant 2/(k - 1).$$

Set $Q'_n = \{(\lambda_j - t_n)/\delta_n : \lambda_1 \in V_n(t), \lambda_j \text{ defined by (32)}\}$. Then

(34)
$$\mathfrak{M}(Q'_n) \ge \inf \frac{(\lambda_j - \lambda_{j-1})(k-1)\mathfrak{M}(V_n)}{\delta_n} \ge \frac{t(k-1)(1-\epsilon)}{k}\mathfrak{M}(V_n(t)).$$

But $Q'_n \subset Q_n(t)$ for all n = 1, 2, ..., which contradicts (30).

Thus, given $\{t_n\} \subset (0, 1), \{x_n\} \to \infty$ such that $\delta_n = \varphi(x_n + t_n \varphi(x_n))/\varphi(x_n) \to \infty$, let k(n) be the least integer greater than δ_n , $-[-\delta_n]$. We conclude that

(35)
$$\left\{t \in [1,2]: \left|\frac{\varphi(x+t\varphi(x))}{\varphi(x)}-1\right| < 2^{1/k(n)}-1; \text{ for all } x \ge x_n\right\} = \emptyset,$$

and we have a uniform bound for the rate of convergence in the *B*-slowly varying limit. A similar argument is applicable when $\lim_{n\to\infty} \delta_n = 0$.

2. Theorem 4 considers uniformly *B*-slowly varying functions bounded away from zero on appropriate sequences. Suppose we add a positive constant to an element in B_{μ} . What can we conclude about this translate?

THEOREM 6. Let $\varphi \in B_{\mu}$, $T(x) = \varphi(x) + \epsilon$, $\epsilon > 0$. Then $T \in B_{\mu} \cap K$.

PROOF. Fix t. Then

(36)
$$\lim_{x\to\infty}\frac{T(x-\epsilon t+tT(x))}{T(x)}=\lim_{x\to\infty}\frac{\epsilon+\varphi(x+t\varphi(x))}{\epsilon+\varphi(x)}=1,$$

and this limit holds uniformly for t in finite intervals. In the proof of Theorem 4, set $x_n = n$, and $f(x) = \log[T(x - \epsilon(x - n)/T(n))]$ $(n \le x < n + 1)$. Define f by (15) and let t = (x - n)/T(n) for $x \in [n, n + 1]$. Then $0 \le t \le 1/T(n) \le 1/\epsilon$, so for $x \le [n, n + 1]$,

(37)
$$|f(x) - f(n)| = \left|\log \frac{T(x - \epsilon t)}{T(n)}\right| = \left|\log \frac{T(n - \epsilon t + \epsilon T(n))}{T(n)}\right| \to 0.$$

So (16) holds, and $T(x - \epsilon(x - n)/T(n)) \in K$, with

(38)
$$T\left(x-\epsilon\frac{x-n}{T(n)}\right)=c(x)\exp\int_{1}^{x}\epsilon(s)\,ds.$$

(39)
$$\lim_{x \to \infty} \frac{T(x - \epsilon(x - n)/T(n) + t)}{T(x - \epsilon(x - n)/T(n))} = 1$$

and this limit holds uniformly for $t \in [0, 1]$, so that for $t = \epsilon(x - n)/T(n)$,

$$c_1(x) = \frac{T(x)}{T(x - \epsilon(x - n)/T(n))} \to 1 \text{ as } x \to \infty.$$

Therefore,

(40)
$$T(x) = c_1(x)c(x)\exp\int_1^x \epsilon(s)\,ds,$$

and so $T \in K$.

Let $\{x_n\}$ be a sequence tending to infinity, and set

$$\{x_{n_{\alpha}}\} = \{x_n : \varphi(x_n) \leq 1\}, \{x_{n_{\beta}}\} = \{x_n : \varphi(x_n) > 1\}.$$

Fix t, and set

$$\lambda_{n_{\alpha}} = tT(x_{n_{\alpha}}), \quad \mu_{n_{\beta}} = t + t\epsilon/\varphi(x_{n_{\beta}}).$$

Then $\lambda_{n_{\alpha}}, \mu_{n_{\beta}} \in [t, t + t\epsilon]$. Let $\eta > 0$ be given. Then there are integers N_1 and N_2 such that

(41)
$$\left| \frac{T(x+\lambda)}{T(x)} - 1 \right| < \eta \qquad (x \ge x_{N_1}; \lambda \in [t, t+\epsilon]), \\ \left| \frac{\varphi(x+\mu\varphi(x))}{\varphi(x)} - 1 \right| < \eta \qquad (x \ge x_{N_2}; \mu \in [t, t+t\epsilon]),$$

since $T \in K$ and $\varphi \in B_u$. Let $N = \max\{N_1, N_2\}$. Then, for $n \ge N$, $\varphi(x_n) \ge 1$,

(42)
$$\left|\frac{T(x_n + tT(x_n))}{T(x_n)} - 1\right| = \left|\frac{\varphi(x_n + \mu_n \varphi(x_n)) + \epsilon}{\varphi(x_n) + \epsilon} - 1\right| < \eta \varphi(x_n) / (\varphi(x_n) + \epsilon) < \eta.$$

While if $\varphi(x_n) < 1$,

(43)
$$\left|\frac{T(x_n+tT(x_n))}{T(x_n)}-1\right| = \left|\frac{T(x_n+\lambda_n)}{T(x_n)}-1\right| < \eta.$$

The bound in (41) holds uniformly for t in finite intervals, so $T \in B_u$, which completes the proof.

I would like to express my gratitude to Daniel Shea, who brought these problems to my attention.

BIBLIOGRAPHY

1. N. G. de Bruijn, Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform, Nieuw Arch. Wisk. (3) 7 (1959), 20–26. MR 21 #5847.

2. G. H. Hardy and W. W. Rogosinski, Notes on Fourier series. III, Asymptotic formulae for the sums of certain trigonometrical series, Quart. J. Math. Oxford Ser. 16 (1945), 49-58. MR 7, 247.

3. J. Karamata, Sur un mode de croissance regulière des fonctions, Mathematica 4 (1930), 38– 53.

4. J. Korevaar, T. van Aardenne-Ehrenfest and N. G. de Bruijn, A note on slowly oscillating functions, Nieuw Arch. Wisk. (2) 23 (1949), 77–86. MR 10, 358.

5. T. T. Moh, On a general Tauberian theorem, Proc. Amer. Math. Soc. 36 (1972), 167-172. MR 47 #5483.

6. G. E. Peterson, *Tauberian theorems for integrals*. II, J. London Math. Soc. (2) 5 (1972), 182–190. MR 47 #5484.

7. C. de la Vallée Poussin, Integrales de Lebesgue, fonctions d'ensemble, classes de Baire, Paris, 1934.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706