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A CHARACTERIZATION OF B-SLOWLY
VARYING FUNCTIONS

STEVEN BLOOM

ABSTRACT. A measurable function ¢ > 0 that satisfies the limit condition
lim,_, . (p(x + t¢(x))/p(x)) = 1 for all ¢ is said to be B-slowly varying. If ¢
is continuous, this limit is shown to hold uniformly for ¢ in compact sets, and
an integral representation is derived.

Recent papers by Moh [5] and Peterson [6] deal with a generalization, due
to Beurling, of Wiener’s Tauberian Theorem.

THEOREM 1. Let ¢ be a positive function satisfying

(1) xll»r{olo W 1 for each fixed t,
and
@ Jim £ o

Let K € L satisfy =, K(t)e™™dt # O for each real \, and let f € L*. If there
exists a constant A such that

3) 1im [* )k [QD(;)’]m — 4 [” Ky,

then
4) hm f f(OH [‘p(;)t] v Af H()dt forall H € L.

Wiener’s Theorem is the special case, ¢ = 1, of Theorem 1.

DEFINITION. A positive, measurable function ¢ that satisfies (1) is B-slowly
varying, and B denotes the class of all such functions. If ¢ satisfies (1)
uniformly for ¢ in every bounded interval (a,b), then ¢ is uniformly B-slowly
varying, denoted ¢ € B,

THEOREM 2. If ¢ € B is continuous, then ¢ € B,,.
PrROOF. We prove this for / between zero and one. The argument for an
arbitrary interval (a,b) follows similarly.

Suppose that ¢ is not uniformly B-slowly varying. Then there is an
€ € (0,1) and sequences {1,} C (0, 1) and {x,} tending to infinity, such that
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(5) |(p(xn + tnq)(xn))/q)(xn) - ll > € (n =12,.. )

The function f,(r) = @(x, + t¢(x,))/e(x,) — 1 is continuous and
lim,_, o |f,(t)] = O for fixed ¢. So there is an integer N and a sequence
{\,} € (0,1) such that

(6) lp(x)/e(x,) =1l =€ (n > N),
where y, = x, + A, 9(x,). Set

V,=A€0,2+¢: £ <e/2),
W, = {p € (0,1): lp(y, + pp(y,))/(x,) — 1] < &/2(1 + €)},
W, ={X =N, + pp(,)/0(x,): p € W}

These sets are Lebesgue measurable, with
(7) lim OU(¥) =2 +¢€ lim W) = 1.
n—oo n—oo

(Korevaar, Van Aardenne-Ehrenfest, DeBruijn [4] cite De Le Vallee Poussin
[7] for this. One may also apply Egoroff’s Theorem to f,(¢).) W, C (0,2 +¢),
and (W) > (1 — €)OM(W,) so that

(8) li’IlILglf MW;,) > 1—c
ForA € W,

P, + A9(x,) @) | _ |90 | | 90 + re(rn)) €
I R cn Rt | Il e | B v i sl B
so that
(10) lp(x, + Aplx,))/lx,) = 1] > ¢/2

and, in particular, A\ & ¥,. Thus ¥, N W, = &, ¥, W, C (0,2 + ¢), so that
(11) 2+ e > lim inf O(), U W;) > lim inf(IU(K;) + IUW,)) > 3,
n n

or € > 1, which is impossible.

Slowly varying functions.
DEFINITION. A positive, measurable function g is slowly varying if it satisfies
the limit condition

. glx+0
12 lim &=——— =
(12) x>0 g(x)
Let K be the class of all slowly varying functions.

For our purposes, K serves as an analogue to B and motivates much of our
work.

1 for each fixed .

THEOREM 3. Let g be a slowly varying function. Then g satisfies (12)
uniformly for t in bounded intervals, and there exist functions c(x) and €(x), €
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continuous, lim, _, , c(x) = ¢ € (0, ), lim,_, , €(x) = O such that
X
(13) g(x) = c(x)exp [~ e(s)ds.

Karamata [3] proved this theorem for g continuous. More recent work has
weakened the hypothesis from continuity to measurability (see, for example,

(1], [2], and [4]).

Relation between K and B,. There is a similarity between the class of
uniformly B-slowly varying functions and the class X, for a function ¢ € B,
that is bounded away from zero on an appropriately chosen sequence is slowly
varying:

THEOREM 4. Let ¢ € B, If there is a sequence {x,} — oo, and constants m,
M, § greater than zero such that

D) m<xp—x, <KM(n=12...),
(i) ¢(x,) >8(n=12,...)
then ¢ € K.
PrOOF. Foreachn = 1, 2, ..., define the function p,(x) for x € [x,, x,4]
by
_ ] : W(ZX—X,H_I—X”) )
(14) Pa(x) = f(l + sm(i Xl - X, .

Then 0 < p,(x) < 1, p,(x,) = 0 and p,(x,,;) = 1. Moreover, the functions
p, are continuously differentiable,

T ™
/ s < —
0 <P < 2Axppy — x,)  2m

’ and p;l(xn) = p;l(xn+]) =0.
Set f = log ¢ and
(15)  AG) = f(x,) + [fxni1) = fOIpa () O < X < Xpyy).

The function f; is defined for all x > xj, it is continuously differentiable, and
satisfies the estimates

|f Gl < (a/m)|f (1) = f(x,)]

and

1A G) = fO < 1fG) = fep)l + | f (o) = £,

where x, < x < x,4,. Thus f] and f; — f tend to zero as x tends to infinity
provided

(16) )}Ln(}o|f(x) _f(xn)| =0 (Xn < X < xn+l)-

For x, < x < x,,, there is a ¢ € [0, M/8] such that x = x,, + ¢(x,). Then
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(17) |f(x) = f(x,)] = |lo MM‘

which gives (16). Choose €(x) between zero and x, so that € is continuous,
e(x;) = f1(x), and f3" e(s)ds = f(x;). Set

18) ) =fi() (x>x) o) = gexp(— [ s)ds).

Then for x > x;, c(x) = exp[f(x) — fi(x)] = 1, and ¢ satisfies (13). It is a
simple matter to verify that such functions are elements of K.

An integral representation. Motivating examples for the class of B-slowly
varying functions are functions such as x? (p < 1) and e~ *. The derivatives
of these functions tend to zero. This does not hold in general, as with

(19) o(x) = {l + sin(1), 0<x<1,

xY2(1 + x Y4sin x), x> L

Here ¢ € B, but lim sup,_, . ¢'(x) # 0.
But these examples suggest an analogue for the class B of Karamata’s
representation (13).

THEOREM 5. Let ¢ € B,. Then there are functions c(x) and €(x), € contin-
uous, 0 < ¢ = lim,_,  c(x) < o0, and lim,_,  €(x) = 0, such that

(20) 9(x) = c(x) [, " (s) ds.

Conversely, if a positive, measurable function @ has the representation (20) with
€ continuous, tending to zero and c(x) tending to a positive limit, then ¢ € B,,.
In particular, any ¢ € B, satisfies (2).

The form of (20) was conjectured by Daniel Shea.

As an example, the function ¢ given by (19) satisfies (20) with c(x)
=1+ x Ysin x, e(x) = x7V2,

We require some additional machinery before proving the theorem. Define
inductively at x a sequence {x,} by

(21) Xg =X, X, = X,_1 + p(x,_1)

For ¢ € B, this sequence virtually characterizes the behavior of ¢ provided
the x, become infinite.

LEMMA . Let ¢ € B,. Then there is an X such that for any x > X and the
sequence {x,,} defined for x by (21), lim,_, ,, x, = 0.

Proor. Choose £ so that for x > £, ¢t € [—1,1],

(22) o(x + 19(x)) > jo(x).

Suppose the Lemma is false. Then there is an x > £ with {x,} given by (21)
such that lim,_, . x, = p < oo. This limit exists, of course, since the sequence
{x,} increases monotonically. Now, x, = x + X¢—_; ¢(x,_;). The series



B-SLOWLY VARYING FUNCTIONS 247

> @(x;) converges and, in particular, lim,_, . ¢(x,) = 0. Now, p > %, so by
(22),

(23) o(») > 39(p)  (p—9(p) <y <p+o(p).
Thus
(24) 0= "li)ngo o(x,) > lil})l_);nf o(») > 39(p),

which contradicts the positivity of ¢.
PROOF OF THEOREM 5. Let X be as in the Lemma and define {x,} by (21) for
some xy > X. Then lim,_,  x, = oo. Set

pa) = 51 (14 sin[ s 2 - 2, — (x| )

(25) 2¢(x,,)

(p < x < Xppp)-
P, is continuously differentiable on [x,, x,,].
0 < ppx) < @lxn)s Palxa) = 0, pylxpe1) = @lx,),
0 < pp(x) < /2, and p)(x,) = pp(xpe1) = 0.
Set

(26) f(X) = w(xn) + Pn(x)[(q)(xn+l) - (p(xn))/q)(xn)] (xn <x< xn+l)'

Then fis continuously differentiable, and

@7) S < (@ 2D)leplx, + lx,))/@lx,) — 1] >0 as x — co.

Finally, for x € [x,,x,,], there is a € [0,1] such that x = x, + t¢(x,).
Thus

o, qi(t'gm)) [‘ B ’qp(an;xgx,,)) B ‘I ] < %

< [y |

Hence, lim, _, , f(x)/p(x) = 1. Define €(x) between zero and x, so that e is
continuous, €(xg) = f'(xg), and f5° e(s)ds = f(xg). For x > xq, set e(x)
= f'(x). Assume further that e(x) >0 for x € [0,x)]. Set c(x)
= @(x)/Jy" €(s)ds. Then (20) holds, € is continuous, and lim,_, €(x) = 0. We
need only show that ¢(x) tends to a finite positive limit. But for x > x,,
c(x) = @(x)/f(x), which tends to one. The converse is easily verified.

(28)

Remarks. 1. Measurability of a slowly varying function g is sufficient to
assure that the limit condition in (12) holds uniformly for ¢ in finite intervals.
An open problem at present is whether or not the hypothesis for Theorem 2
can be similarly weakened.
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The contradiction in the proof of Theorem 2 was obtained by constructing
sets W, of measure bounded below and all contained in a finite interval.
Since

M(W}) > inf(e(y,)/(x,)), and W, C (0,1 + Sgp(w(yn)/dxn))),

it is impossible for ¢ € B to have constants m, M, § > 0 and sequences
{t,} € (0,1), {x,} = oo, such that |p(y,)/e(x,)—1>8 and m
< ¢o(y,)/9(x,) < M, where y, = x, + t,9(x,). For continuous functions, the
second of these inequalities follows from the first. Measurable functions are
not as simple, however. Consider, for example,

_ 1/x, x>t>0,
(29) f@ﬂ—{a e

For each fixed ¢+ > 0, lim,_,of(x,7) = 0, but for any € > 0, if we choose
sequences {x,} = 0, {r,} so that f(x,,1,) > € (n=123,...), then
lim,_, . f(x,,t,) = .

Let 8, = ¢(,)/®(x,), and suppose lim, 8, = oo. What can be said
about the sequence {§,} relative to ¢?

Fix ¢ € [1,2] and let k be an integer, k > 4. Let e € (0,2 — 1) be given,
and set

V() = {n € (tp.t, + 0): lplx, + po(x,))/elx,) — 1| < ¢,
0,(1) = {X € [0,2e]: |o(y, + Ap(y,)) /9(y,) — 1| > 1/4}.

Then
(30) lim (K (1)) =, lim 9M(Q,(r)) = O.
n—oo n—oo

There is an £ such that for x > %,
31) lp(x + 19(x))/e(x) — 1] <e
Suppose that 8, € [k — 1,k] for some x, > x. For A; € ¥;(?), define A, by
(32) A= Noy Forelx, + A elx,) /elx,) (2 << k).
Then

(p(yn + ((Aj - tn)/sn)(p(yn)) _ (P(Xn + qu’(xn))
(33) ®(Jn) 8, p(x,)

< +e8' <+ <2/(k— ).
Set @, = {(\; — 1,)/8,: \; € V;(1), \; defined by (32)}. Then

Wi >\,--1)(; — DI(K) S

(34) 9(Q,) > inf 1k = 'Z“ ~ Dom (k).

n

But Q, C Q,(r) foralln = 1, 2, ..., which contradicts (30).
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Thus, given {t,} C (0,1), {x,} = oo such that §, = ¢(x, + 1,9(x,))/P(x,)
— o0, let k(n) be the least integer greater than §,, —[—8,]. We conclude that

(35) {t (S [l 2] ’Mx_)) < zl/k(n) —1:forall x > xn} -,

and we have a uniform bound for the rate of convergence in the B-slowly
varying limit. A similar argument is applicable when lim,_, 6, = 0.

2. Theorem 4 considers uniformly B-slowly varying functions bounded
away from zero on appropriate sequences. Suppose we add a positive constant
to an element in B,. What can we conclude about this translate?

THEOREM 6. Let ¢ € B, T(x) = ¢(x) + ¢,¢ > 0.Then T € B, N K.

Proor. Fix t. Then

T(x — et + tT(x)) lim € + p(x + te(x)) _
T(x) x—>00 €+ (x)

(36) lim 1,

X—>00
and this limit holds uniformly for ¢ in finite intervals. In the proof of Theorem
4, set x, = n, and f(x) = log[T(x — e(x — n)/T(n))] (n < x < n + 1). De-
fine f by (15) and let t = (x — n)/T(n) for x € [n,n + 1]. Then 0 < ¢
< I/T(n) < /g, so for x < [n,n + 1],

_ T(x — et) _ T(n — et + €T(n))
61 15 =10 = Jlog T = s g 0
So (16) holds, and T(x — e(x — n)/T(n)) € K, with
(38) T(x - e%) = c(x)exp'/;x €(s) ds.

(39) lim T(x —e(x — n)/T(n) + 1)

x—oo  T(x — e(x — n)/T(n)) =1L

and this limit holds uniformly for ¢t € [0, 1], so that for t = e(x — n)/T(n),

T(x)
qlx) = T — et — n)/T(n)) -1 asx— .
Therefore,
(40) T(x) = e (x)e(x)exp [ " e(s) ds,
andso T € K.

Let {x,} be a sequence tending to infinity, and set

(o) = bon @) < 1 () = Dt 9lx,) > 1.

Fix ¢, and set

Ap, = tT(x, ), fpy = 1 F te/q>(x,,ﬂ).
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Then A, , tny € [t,¢ + te). Let ; > 0 be given. Then there are integers N, and
N, such that

‘T(x+)\)

e —l’<n (x > xp3A € [11 + €]),

41
“n ’qv(x +polx) _

(x)
since T € Kand ¢ € B,. Let N = max{N,, N,}. Then, forn > N, ¢(x,) > 1,

‘(n (x > xp5p € [, + te]),

‘T(xn;r(;nT)(xn)) _ 1. _ ‘qv(xn ;(A;Z;P(:—‘ne)) +te 1‘

< nolx,)/ (9(x,) + € <.

(42)

While if ¢(x,) < 1,

(43) ‘M_,F‘ﬂxﬁ_&)

T(x,) T(x,)

The bound in (41) holds uniformly for ¢ in finite intervals, so T € B,, which
completes the proof.

I would like to express my gratitude to Daniel Shea, who brought these
problems to my attention.

—1’<n.
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