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A NEW PROOF FOR AN INEQUALITY OF
JENKINS

GEORGE B. LEEMAN, JR.

Abstract.   A new proof of Jenkins' inequality

Ke(e2l$aJ - e^aj - rewa2) < 1 + |t2 - |T2log(T/4),       0 < t < 4,

for univalent functions/(z) = z + 2^=2 anz" 's presented.

Let S be the collection of functions f(z) = z + 2^=2 anz" analytic and

univalent in the unit disk D. After Lowner's [6] famous proof that |a31 < 3 for

such functions, his method was used to establish a number of theorems on the

third coefficient. For example, Fekete and Szego [1] solved a problem for odd

univalent functions by examining ta~ \a2\; more generally, Goluzin [3]

found the best bounds on |a3 — uxi2\ for real /t, and he also maximized

Ital - tall in[4
The most penetrating fact about the third coefficient is the spectacular

inequality

(1) Re(e2i9a2 - e2iSa2 - Te'ea2) < 1 + |t2 - ^T2log(r/4),       0 < t < 4,

of Jenkins [4], which includes as special cases all the results already cited (the

right-hand side of (1) is defined by continuity at t = 0).

The purpose of this paper is to show that (1) can be obtained from the

Lowner theory. For each nonnegative x we set

uxii) = e~x       if 0 < t < x,

= e~'        if x < t < oo,

and we prove the following

Lemma. Let w(f) be continuous on [0, oo) satisfying |«(f)| < e~' there. If

(2) IJT    uit)dt\ =(x+ l)e~*

for some x > 0, then

(3) £ uit)2dt>ix + ±)e-2x,

with equality only for u — ux.

Proof. We claim that for each nonnegative /
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(4) u(tf + 2e~xux(t) - 2e~xu(t) > ux(t)2,

with equality only for u(t) = ux(t). Indeed, (4) is equivalent to (u(t) — e~x)

> 0 when 0 < t < x and to \e~l - u(t)][2e~x - e~' - u(t)} > 0 when x < t

< oo. By integrating both sides of (4), computing J"0°° ux(t)dt, and using (2),

we arrive at (3).

Let us remark that our proof of this Lemma is based on Landau's proof of

a theorem of Valiron (see (16) in [5, p. 630]); however, our hypotheses and

conclusion are quite different.

According to the Lowner theory, it suffices to derive (1) for functions

f(z) = z + 2^=2 a„zn G S in which

(5) a2 = 2 J     k(t)e-'dt,

(6) a3 = 4(J°° k(i)e-'dtf - 2 f°° k(t)2e~2'dt = a\ - 2 J°° k(t)2e-2'dt,

where k(i) = e"*''' is a continuous mapping from [0, oo) to the unit circle 3P.

If we set u(t) = e~' cos a(t), then for arbitrary p > 0, (5) and (6) yield

Re(a3 - a\ - 4e-*-a2) = 1 - 4 ]     u(t)2 dt - 8<T" J     u(t)dt

(7)
<1-4J     M(/)2^-r-8e-"|J     u(t)dt\.

If Re <32 = 0, then (5) and (7) imply the sharp estimate Re a3 < 1 which holds

for the function z —> z/(l — z2) G S. Otherwise, we can find an x > 0 such

that |/q m(0 c?f| = (x + l)e~x, because the range of the function x -> (x + l)e_;i:

on [0, <») is (0, 1 ]. Combining (3) and (7) leads to

(8) Re(a3 - a\ - Ae^a2) < G(x),

where

G(x) = 1 - 4(x + x2)e-2x + 8e-"(jc + l)e_jc.

Since G'(x) = 8xe_2A:(l - ex~'i), G has a maximum at x = fi, and (8) gives

(9) Re(a3 - a\ - Ae^a2) < 1 + 4/xe-2^ + 6e"2f.

If we replace/(z) by e~iBf(ei9z) and /i by -log(r/4), then (1) follows from (9).

Because Lowner's technique is based on parametric representation of a

dense subclass in S, we cannot determine all the cases of equality in (9) by his

approach. Jenkins' method does handle this more difficult problem.
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