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INVERSE THEOREMS FOR FUNCTIONS IN Lp
AND OTHER SPACES1

Z. DITZIAN

Abstract. Inverse theorem proved by R. De Vore for C(-oo, oo) is proved

to be true also for L . This is an answer to a problem posed by De Vore in

his book, The approximation of continuous functions by positive linear operators.

1. Introduction. R. De Vore [1, Chapter 8] proved that \\A2hJ\\c = 0(A£),
h„ -* 0+,  and  ||A^/||C = 0(Aa), A -> 0+,  are equivalent provided that   1

< Wi < M < M. where Ajfix) = fix - A) - 2f(x) + fix + A).
G. Freud [2], using the Hausdorff-Young inequality, proved an analogous

result for L2. De Vore mentions [1, p. 277] that the corresponding Lp problem

is open. In this paper it will be shown that \\A2h f\\L = <9(A") and ||A|/||L

= (9(Aa) are equivalent, and similar equivalence relations hold for some other

spaces. In addition, De Vore's inverse theorem for positive approximating

convolution operators on C[—it, it] is generalized to L .

2. Lp result for symmetric differences. The basic simple idea of this paper

is given already in the proof of the following theorem:

Theorem 1. For f £ A^-oo, oo), orf £ Lpi—rr,tr), 1 < p < oo, the rela-

tions \\Alji-)\\p = 0(A«), A„ -> 0+, and \\A2hfi-)\\p = 0(Aa), A -» 0+, are equiv-
alent, where 1 < hjhn+x < M < oo, and 0 < a < 2.

Proof. Define A(x) = $ fix + t)git)dt for / £ Lp, g £ Lq iq~x + p~l

= 1), and ||g||   = 1. Since A(x) is continuous, ||A||C = Wf]^ and therefore,

l|A||c< ll/H, ||g||9 and

KA< wtijWp ■ k\\q < HAi/||p< AA«.

De Vore's theorem implies ||A^A||C < Kxha where Kx depends on a, K and

{hn) only. Therefore, |A(-A) - 2A(0) + A(A)| < Kxha. For every A, we can

choose gh with ||gA||? = 1 and

|A(-A) - 2A(0) + A(A)| =   j Alfit)ghit)dt   = llA^ < A, A".

Theorem 1 can be combined with the necessity of the condition 1 < hn/hn+x

< M proved by G. Freud [2] in the following theorem:

Theorem la. 7/0 < a < 2, 1 < p < oo and hn | 0, then a necessary and

sufficient condition for \\A2hJ\\p = 0(A"), n -» oo, to imply  \\A2hf\\p = 0(ha),
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h -» 0+,  is that there exists a constant M < oo  such that h„/hn+x < M,

n = 1, 2, ....

3. The result for semigroups.

Theorem 2. For a C0 (strongly continuous) semigroup T(t) on a Banach space

B,

\\T(t0)f- 2T(t0 + h)f+ T(t0 + 2A)/||fl - \\A2hT(t0)f\\B = 0(ha),

h^0+,

and

WhJ(t0)f\\B = 0(h«),       A„-»0,
»

are equivalent for a fixed t0 > 0, 0 < a < 2 and 1 < hn/hn+\ < Az < oo.

Proof. Define P(?) = (T(t)fg) where g G P* (the dual of B) and ||g||B,

= 1. Now, \\A2n T(t0)f\\B < m implies l|A^P(r)llB < Kxhan, t0 < t < r0
+ 1, and therefore, |A^P(r)| < Kx h%, t0 < t < f0 + 1. Using De Vore's result

[1, Theorem 8.3, p. 258], we have \A2hF(t)\ < A:2/ia, r0 < / < t0 - 2h and,

therefore, |AJ;P(?0)| < K2ha. By choosing for any fixed h an element ghk

G B* such that \\gKk\\ = 1 and \($T(t0)f,g) - \\A2h T(t0)f\\\ < l/k, the
proof is easily completed.

Examples of the applicability of the above theorem are the spaces B

= Pp(0, oo) or B = Lpq(0,oo), the Lorentz spaces, for which p ¥= oo and

q ¥= oo (for definition, see Stein and Weiss [3, p. 191]).

4. Inverse theorem for Lp(-tr,ir). Define the convolution approximating

operator L„f by

(4.1) LJ(x)= f f(x-t)dfi„(t)
J—77

where jin(t) is increasing, n(—ir) = 1 - n(tr) = 0 and d/in(t) is a symmetric

measure satisfying

(4.2) /* t2dK(t) = eg = 0(l),       n -* co,    C, < 4»„+1/4»„ < C2
./—77

and for every e > 0, there exists /I such that

(4.3) .ft/**® < 5*
In particular, (4.3) holds if

(4.4) f <44t„« = cXA       « -» oo.
J— 77

Theorem 3. Suppose f G Lp(—n,-ir),f(x) = /(x + 2w), Lnf and cbn satisfy-

ing (4.1), (4.2) W (4.3); rfe/t \\LJ - f\\p = 0(c?an) a«</ HA^/H, = 0(ha) are
equivalent for 0 < a < 2.
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Proof. Define Fix) = fnn fix ~ t)git)dt where l^ = 1. Obviously

iLJi ■ )) * gix) = LnFix) and, therefore,

||L„A-A||C= \\Lnf*g-f*g\\c= \\iLnf-f)*g\\c

< \\Lnf - fWphW, = \\LJ-f\\p = Oitf).

Using De Vore's result, \\A2h A(/)||c = 0(Aa) and, following earlier arguments,

||Aj,/||L  = 0(Aa). The other direction is an easy calculation.

5. Remark. In his paper [2] G. Freud proves a more general result for

L2i—7T,ir) than Theorem 1, namely for A„ as in Theorem 1, ||A^/||L2 < <?(A")

if and only if ||A£||L2 = 0(Aa) for 0 < a < k. I feel that the same result

would be true for A  and C, but the method used here does not yield it.
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