AN ABELIAN ERGODIC THEOREM FOR SEMIGROUPS IN L_n SPACE

S. A. MCGRATH

ABSTRACT. The purpose of this paper is to prove individual and dominated ergodic theorems for Abel means of semigroups of positive L_p contractions, 1 .

1. **Introduction.** Let (X, Σ, μ) be a σ -finite measure space and $L_p(\mu) = L_p(X, \Sigma, \mu)$, $1 \le p \le \infty$, the usual Banach spaces of complex-valued functions. Let $\{T(t): t \ge 0\}$ be a strongly measurable semigroup of positive $L_p(\mu)$ contractions for some $1 . This means that (i) <math>||T(t)||_p \le 1$, $t \ge 0$; (ii) $0 \le f \in L_p(\mu) \Rightarrow T(t)f \ge 0$; (iii) T(s+t) = T(s)T(t), $s, t \ge 0$; (iv) $f \in L_p(\mu) \Rightarrow T(\cdot)f$ is measurable with respect to Lebesgue measure on the interval $[0, \infty)$. For $\lambda > 0$ we set

$$R_{\lambda}f(x) = \int_{0}^{\infty} e^{-\lambda t} T(t) f(x) dt$$

for $f \in L_p(\mu)$. In this paper we prove that

$$\int \left(\sup_{\lambda>0} |\lambda R_{\lambda} f(x)|\right)^{p} d\mu \leq (p/p-1)^{p} \int |f|^{p} d\mu$$

and $\lim_{\lambda\to 0+}\lambda\,R_\lambda f(x)$ exists and is finite for a.e. $x\in X$. Before proceeding we justify the definition of $R_\lambda f(x)$. By Theorem III.11.17 in [3], given $f\in L_p(\mu)$ and $\lambda>0$ the strong measurability of $\{T(t)\}$ guarantees the existence of a function $g_\lambda(t,x)$ on the product space $[0,\infty)\times X$, measurable with respect to the usual product σ -field, which is uniquely determined up to a set of measure zero in this space by the conditions (i) $g_\lambda(t,\cdot)=e^{-\lambda t}T(t)f$ for a.e. t, (ii) for a.e. x, $g_\lambda(\cdot,x)$ is integrable over $[0,\infty)$ and $\int_0^\infty g_\lambda(t,x)\,dt$ as a function of x is equal a.e. to $\int_0^\infty e^{-\lambda t}T(t)f\,dt$ defined as the L_p limit of Riemann sums. The set on which

$$\int_0^\infty g_{\lambda}(t,x) dt \neq \int_0^\infty e^{-\lambda t} T(t) f dt$$

is independent of $\lambda > 0$. We define $R_{\lambda}f(x) = \int_0^{\infty} g_{\lambda}(t,x) dt$. This justifies the definition of $R_{\lambda}f(x)$.

In a recent paper of R. Sato [7] it was shown that if $f \in L_p(\mu)$ then $||f^*|| \le (p/(p-1))||f||$ and $\lim_{\lambda \to 0+} \lambda R_{\lambda} f(x)$ exists and is finite a.e. on X. The function f^* is given by $f^* = \sup_{\lambda > 0} |\lambda R_{\lambda} f(x)|$. He also obtained a weak

Presented to the Society, August 19, 1975; received by the editors May 13, 1975.

AMS (MOS) subject classifications (1970). Primary 47D05, 28A65.

Key words and phrases. Abel mean, individual ergodic theorem, strongly continuous semigroup, positive L_p contraction.

estimate for f^* in case $f \in L_1(\mu)$. Sato obtained these results assuming $\{T(t)\}$ to be a strongly measurable semigroup of (not necessarily positive) $L_1(\mu)$ contractions satisfying $\|T(t)f\|_{\infty} \leq \|f\|_{\infty}$ for all $f \in L_1(\mu) \cap L_{\infty}(\mu)$. In this paper we obtain Sato's L_p results assuming $\{T(t)\}$ is a semigroup of positive $L_p(\mu)$ contractions for some 1 .

ACKNOWLEDGMENT. The author wishes to thank Professor M. A. Akcoglu for making his manuscript [1] available to him prior to publication.

- 2. **Preliminary results.** Our purpose in this section is to establish the dominated estimate $||f^*|| \le (p/(p-1))||f||$ for a discrete semigroup. Let T be a positive contraction of $L_p(\mu)$. Throughout this section we let $R_\lambda f = \sum_0^\infty \lambda^n T^n f$, $f \in L_p(\mu)$, $0 < \lambda < 1$, and $f^* = \sup_{0 < \lambda < 1} |(1 \lambda)R_\lambda f|$. We say that T admits of a dominated estimate with constant c > 0 if $||f^*|| \le c||f||$, $f \in L_p(\mu)$.
- 1. Lemma. Let T_n , n = 1, 2, ..., and T be positive contractions of $L_p(\mu)$ such that each T_n admits of a dominated estimate with constant c. If $\{T_n\}$ converges strongly to T then T also admits of a dominated estimate with constant c.

PROOF. The argument is analogous to that appearing in [5, p. 369]. Let A_1, \ldots, A_n be disjoint measurable sets and k a positive integer. For any $f \in L_p^+(\mu)$ and $0 < \lambda_j < 1, j = 1, 2, \ldots, n$, we have

$$\left\| \sum_{j=1}^{n} (1 - \lambda_j) \chi_{A_j}(f + \lambda_j T_i f + \cdots \lambda_j^k T_i^k f) \right\| \le c \|f\|$$

for $i=1,2,3,\ldots$ Since $\{T_i\}$ converges strongly to T, the above estimate holds with T_i replaced by T. It follows that $\|\sum_j (1-\lambda_j)\chi_{A_j}R_{\lambda_j}f\| \le c\|f\|$. By the monotone convergence theorem we get

$$\left\| \sup_{\substack{0 < \lambda < 1 \\ \lambda \text{ rational}}} (1 - \lambda) R_{\lambda} f \right\| \le c \|f\|.$$

Since $(1 - \lambda)R_{\lambda}f$ depends continuously on λ , it follows that

$$\left\| \sup_{0 < \lambda < 1} (1 - \lambda) R_{\lambda} f \right\| \le c \|f\|,$$

 $f \in L_p^+(\mu)$. Clearly the estimate also holds for arbitrary $f \in L_p(\mu)$. Q.E.D.

2. LEMMA. Let (X, Σ, μ) be a Lebesgue space and T a positive invertible isometry of $L_p(\mu)$. Then T admits of a dominated estimate with constant p/(p-1).

PROOF. It is well known (see [5], [6]) that T is induced by an invertible point transformation and that, as a consequence of Linderholm's theorem [4, p. 71], T may be approximated in the strong operator topology by positive periodic isometries. Hence by Lemma 1 it is sufficient to prove the lemma assuming T is a positive periodic isometry. If $0 < f \in L_p(\mu)$ and T has period n, then $h = \sum_{0}^{n-1} T^i f$ is a positive fixed function for T, i.e. Th = h. As in [2] define a measure m on Σ by $m(A) = \int_A h^p d\mu$ and an operator P on $L_p(m)$ by P(f) = T(fh)/h, $f \in L_p(m)$. By Lemma 3.1 in [2], $||P||_1 \le 1$, $||P||_{\infty} \le 1$.

Consequently P admits of a dominated estimate with constant p/(p-1) by Theorem 2 in [7]. For $f \in L_p(\mu)$, we have $f/h \in L_p(m)$ and $P^n(f/h) = T^n(f)/h$, $n = 0, 1, 2, \ldots$ Hence

$$\int \sup \left| (1 - \lambda) \sum_{n=0}^{\infty} \lambda^n T^n f \right|^p d\mu = \int \sup \left| (1 - \lambda) \sum_{n=0}^{\infty} \lambda^n P^n (f/h) \right|^p dm$$

$$\leq (p/(p-1))^p \int |f|^p d\mu.$$

Thus T admits of a dominated estimate with constant p/(p-1). Q.E.D.

We now show that every positive contraction of $L_p(\mu)$ admits of a dominated estimate. We proceed as in [1]: the estimate is obtained first for positive contractions (matrices) operating on ℓ_p , where ℓ_p is the L_p space consisting of functions $r = (r_i) \in R_n$ whose norms are given by $||r||_p = [\sum_1^n |r_i|^p m_i]^{1/p}$, where the m_i 's are fixed positive numbers. Some of the details in the proofs of the following lemmas are omitted since the arguments are similar to those in [1].

3. LEMMA. Let $T: \ell_p \to \ell_p$ be a positive contraction. Then T admits of a dominated estimate with constant p/(p-1).

PROOF. The operator T is given by an $n \times n$ matrix (T_{ij}) whose entries T_{ij} are nonnegative. By Lemma 1 it is enough to establish the lemma assuming each $T_{ij} > 0$. Clearly we may assume ||T|| = 1. Given these conditions on T we construct as in [1] a space (Z, \mathfrak{B}, ν) where $Z = \bigcup_{i=1}^{n} E_i$, E_i a rectangle in R_2 , \mathfrak{B} is the collection of two dimensional Borel subsets of Z, ν is the restriction of two dimensional Lebesgue measure to \mathfrak{B} . The E_i 's satisfy $\nu(E_i) = m_i$. For a given $r = (r_i) \in \ell_p^+$ set $f = \sum_{i=1}^{n} r_i \chi_{E_i}$. There exists a positive invertible isometry Q on $L_p(Z)$ such that for $i = 0, 1, 2, \ldots$

$$EQ^{i}f = \sum_{j=1}^{n} (T^{i}r)_{j}\chi_{E_{j}},$$

where E is the conditional expectation operator on $L_p(Z)$ with respect to $\{E_i\}$. Setting $f^* = \sup_{0 \le \lambda \le 1} (1 - \lambda) \sum_{i=0}^{\infty} \lambda^i Q^i f$, we have

$$||f^*|| \le (p/(p-1))||f|| = (p/(p-1))||r||$$

by Lemma 2. But $\sup_{0 < \lambda < 1} (1 - \lambda) \sum_{i=0}^{\infty} \lambda^{i} EQ^{i} f \leq Ef^{*}$ and

$$\sup_{0<\lambda<1} (1-\lambda) \sum_{i=0}^{\infty} \lambda^{i} E Q^{i} f = \sup_{0<\lambda<1} (1-\lambda) \sum_{i=0}^{\infty} \sum_{j=1}^{n} \lambda^{i} (T^{i} r)_{j} \chi_{E_{j}}$$
$$= \sum_{i=1}^{n} r_{j}^{*} \chi_{E_{j}}.$$

Thus $||r^*|| = ||\sum_{i} r_i^* \chi_{E_i}|| \le ||Ef^*|| \le (p/(p-1))||r||$. Q.E.D.

4. Lemma. Let T be a positive contraction of $L_p(\mu)$. Then T admits of a dominated estimate with constant p/(p-1).

PROOF. Suppose the theorem is false. Then there exists $f \in L_p^+(\mu)$, $K \ge 1$, $0 < \lambda_j < 1, j = 1, 2, ..., k$ such that

$$\left\| \sup_{i} (1 - \lambda_{j}) \sum_{i=0}^{K} \lambda_{j}^{i} T^{i} f \right\| > (p/(p-1)) \|f\|.$$

By Lemmas 3.1 and 3.2 in [1] there exists a conditional expectation E on $L_p(\mu)$ such that

$$\left\| \sup_{i} (1 - \lambda_{j}) \sum_{i=0}^{K} \lambda_{j}^{i} (ET)^{i} Ef \right\| > (p/(p-1)) \|Ef\|.$$

Let $\{E_1, \ldots, E_n\}$ be the partition of X corresponding to E and $\{E_{i_1}, \ldots, E_{i_m}\}$ the atoms of $\{E_i\}$ having finite positive measure. The subspace of $L_p(\mu)$ of functions which are constant on these atoms can be identified with ℓ_p and ET defines a positive contraction on this ℓ_p . Then the preceding inequality contradicts Lemma 3. Q.E.D.

3. Main results. Throughout this section we set

$$R_{\lambda}f(x) = \lambda \int_{0}^{\infty} e^{-\lambda t} T(t) f(x) dt$$

and

$$f^* = \sup_{0 \le \lambda \le \infty} |\lambda R_{\lambda} f(x)|, \quad f \in L_p(\mu).$$

5. Lemma. For $f \in L_p(\mu)$ we have $f^* \in L_p(\mu)$ and

$$||f^*|| \le (p/(p-1))||f||.$$

PROOF. As in [7, pp. 544-545], one can show there exists a sequence $\{n_i\}$ such that for any rational $\lambda > 0$,

$$\lambda R_{\lambda} f(x) = \lim_{i} (1 - e^{-\lambda/n_i}) \sum_{k=0}^{\infty} e^{-\lambda k/n_i} T(k/n_i) f(x) \quad \text{a.e.}$$

Setting

$$f_i^*(x) = \sup_{0 < \lambda < \infty} (1 - e^{-\lambda/n_i}) \sum_{k=0}^{\infty} e^{-\lambda k/n_i} T(k/n_i) |f|(x),$$

we have $|\lambda R_{\lambda} f(x)| \leq \lim_{i \to \infty} \inf f_{i}^{*}(x)$ a.e. for any rational $\lambda > 0$. Since the mapping $\lambda \to \lambda R_{\lambda} f(x)$ is continuous for a.e. x, it follows that

$$\sup_{0 < \lambda < \infty} |\lambda R_{\lambda} f(x)| = \sup_{\substack{\lambda > 0 \\ \lambda \text{ rational}}} |\lambda R_{\lambda} f(x)| \quad \text{a.e.}$$

Thus

$$f^*(x) \le \lim \inf f_i^*(x)$$
 a.e.

By Fatou's lemma and Lemma 5 we have

$$||f^*|| \le (p/(p-1))||f||.$$

This completes the proof.

6. THEOREM. For any $f \in L_p(\mu)$, the limit

$$\lim_{\lambda \to 0+} \lambda R_{\lambda} f(x)$$

exists and is finite a.e.

PROOF. The argument is the same as in [7]. For $1 , <math>L_p(\mu)$ is reflexive and thus the vector subspace of functions f of the form

$$f = h + \sum_{i=1}^{n} [I - T(t_i)]g_i,$$

where T(t)h = h for all $t \ge 0$ is dense in $L_p(\mu)$ (see Corollary VIII. 7.2 in [3]). Since

$$\lambda \int_0^\infty e^{-\lambda t} T(t) [I - T(t_i)] g_i(x) dt$$

$$= \lambda e^{\lambda t_i} \int_0^{t_i} e^{-\lambda t} T(t) g_i(x) dt$$

$$+ \lambda (1 - e^{\lambda t_i}) \int_0^\infty e^{-\lambda t} T(t) g_i(x) dt \quad \text{a.e.}$$

for each i, and

$$\lim_{\lambda \to 0+} \lambda e^{\lambda t_i} \int_0^{t_i} e^{-\lambda t} T(t) g_i(x) dt = 0 \quad \text{a.e.}$$

for each i, it follows from Lemma 5 that

$$\lim_{\lambda \to 0+} \lambda \int_0^\infty e^{-\lambda t} T(t) [I - T(t_i)] g_i(x) dt = 0 \quad \text{a.e.}$$

for each *i*. Thus $\lim_{\lambda \to 0+} \lambda R_{\lambda} f(x)$ exists and is finite for any f in a dense subset of $L_p(\mu)$. Hence the Banach convergence theorem [3, Theorem IV.11.3] implies that $\lim_{\lambda \to 0+} \lambda R_{\lambda} f(x)$ exists and is finite a.e. for all $f \in L_p(\mu)$. Q.E.D.

We remark that if we set $\tilde{f} = \lim_{\lambda \to 0+} \lambda R_{\lambda} f(x)$, then it follows from Lemma 5 and the Lebesgue dominated convergence theorem [3, III.6.16] that $\tilde{f} \in L_p(\mu)$ and $\lambda R_{\lambda} f(x)$ converges to \tilde{f} in norm as well as pointwise.

BIBLIOGRAPHY

- 1. M. A. Akcoglu, A pointwise ergodic theorem in L_p spaces, Canad. J. Math. (to appear).
- 2. R. V. Chacón and J. Olsen, Dominated estimates of positive contractions, Proc. Amer. Math. Soc. 20 (1969), 266—271. MR 40 #1579.
- 3. N. Dunford and J. T. Schwartz, *Linear operators*. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 4. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, no. 3, Math. Soc. of Japan, Tokyo, 1956; reprint, Chelsea, New York, 1960. MR 20 #3958; 22 #2677.
- 5. A. Ionescu Tulcea, Ergodic properties of isometries in L^p spaces, 1 , Bull. Amer. Math. Soc. 70 (1964), 366—371. MR 34 #6026.

- 6. J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459—466. MR 21 #3764.
- 7. R. Sato, An Abel-maximal ergodic theorem for semigroups, Pacific J. Math. 51 (1974), 543—547.

DEPARTMENT OF MATHEMATICS, U.S. NAVAL ACADEMY, ANNAPOLIS, MARYLAND 21402