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A NOTE ON COMMUTATORS AND SINGULAR
INTEGRALS1

PAUL S. MUHLY

Abstract.   A new approach to the analysis of a certain commutator

equation is presented.

1. Introduction. In this note we apply a technique due to Douglas [2] to

analyze the solutions to the operator equation

(1) HX-XH = iR2

where H is a (possibly unbounded) selfadjoint operator on a (complex) Hilbert

space %2 R is a bounded nonnegative operator on % and where the unknown

A" is a bounded selfadjoint operator on X Our analysis will provide a new and

elementary proof of a well-known theorem which is due, in various forms, to

Xa Dao-xeng [8], Pincus [5], and Kato [4]. Our approach has certain points of

contact with Kato's but differs from his in that instead of making a detailed

analysis of the resolvent of H, we use a basic integral which appears in

perturbation theory, and which he used too, to prove a theorem of Putnam [6]

by exhibiting an explicit unitary equivalence between H and multiplication by

x on a direct integral based on Lebesgue measure on R. This unitary

equivalence is then easily seen to be one also between X and an explicit

singular integral operator on the direct integral.

Since H may be unbounded, what is meant by a solution to equation (1) is

open to interpretation. Therefore we specify now that by a solution to

equation (1) we shall mean a bounded selfadjoint operator X such that

IDom(i/)CDom(//) and such that (HX - XH)f = iR2f for all f
G Dom(H).

2. The solution.    We shall write U, = e',H, t G R.

Recall that/belongs to Dom(/7) precisely when

iutf^KmU<+tJ-UJ
dt   ,J      h->0 h

exists, and that for such/ (d/dt)UJ = iHUJ = iU,Hf. Consequently, if P is
any bounded linear transformation on % which maps Dom(H) into Dom(H),
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then

I r, TU*,def        Ut+hTU*+hf - UJJJ*f
dt U'1U' J       "JJo h

exists for all/ £ Dom(77) and, of course, is U,(i(HT - TH))U*. Thus a

bounded selfadjoint operator X satisfies equation (1) if and only if X Dom(77)

C Dom(77) and (d/di)UtXU*f = -UtR2U*f for all/ £ Dom(77).

Lemma 2.1. There is at most one solution Q to equation (1) which satisfies the

equation

(2) lim U,QU* = 0

in the strong operator topology. Moreover, if a solution to equation (1) exists, then

a solution Q satisfying equation (2) also exists, is nonnegative, and every solution

X to equation (1) may be written as X = Q + A where A commutes with H?

Proof. Suppose Qx and Q2 are solutions to equation (1) satisfying equation

(2). Then Qx - Q2 commutes with {£/,}/eR and by equation (2) must be zero.

Let A' be a solution to equation (1). Then since id/dt)UtXU*f = -U,R2 U*f,

f £ Dom(77), {UtXU*)IBR is a decreasing family of bounded selfadjoint

operators. Since this family is clearly bounded below, lim,^.^ U,XU* exists in

the strong operator topology and defines a bounded selfadjoint operator A

which clearly commutes with {Ut}lGR. Hence A commutes with 77 and so

X — A is a nonnegative solution to equation (1) which satisfies equation (2).

The proof is complete.

Definition 2.2. If equation (1) has a solution, then the unique solution

satisfying equation (2) is called the principal solution of equation (1).

We let ^ denote the closure of the range of 7? and we let L|,(R) denote the

collection of all weakly measurable ^-valued functions on R which are norm

square integrable with respect to Lebesgue measure on R. The subspace of

L4(R) consisting of those functions which vanish a.e. on (—oo,0) will be

denoted by L;|([0, oo)) and the projection from L^R) onto L|,([0, oo)) will be

denoted by P. Finally, (S^eR will denote the unitary group defined on L;|(R)

by the formula iS,f)ix) = fix -/),/£ LJ^R), t £ R, and {S,},^ will
denote the semigroup of isometries defined on L|([0, oo)) by restricting St,

t > 0, to L|([0, oo)); i.e., S, = S,\L%i[0, oo)), ; > 0, where the vertical bar

denotes restriction.

Theorem I. Suppose equation (1) has a solution and let Q be its principal one.

Then there is a bounded linear transformation C from % to L4(R) such that

CU* = S* Cfor all t £ R and such that Q = C* PC.

Proof. First note that from the discussion preceding Lemma 2.1, we may

infer that for/ £ Dom(77),

I      UlR2U,*fdt =   lim  - I    jUQUffdt
(3) ./o r"^°°     ./o   "'

= Qf- lim  UTQUT!f= Qf.
1 —>00

3 This means that A Dom(r7) C Dom(//) and AHf = HAf, f e Dom(i/). Since Dom(/7)

= {f\(d/dt)UJ exists} it is clear that A commutes with H if and only if A commutes with {(/,}/eR.
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Hence, since Dom(H) is dense and Q is bounded, Jq* UtR2U* dt converges

as an improper integral in the strong operator topology to Q. For / G % we

define the ^-valued function Cf on [0, oo) by the formula (Cf)(t) = RU*f.
This function is in L^^O, oo)) because

/0°° \\(Cf)(t)\\2dt =/0°° (U,R2U*f,f)dt = (QfJ) = ||e'/2/||2,

and so C is a bounded linear transformation from % to L|([0, oo)) satisfying

the equation Q = C* C. Clearly CU* = S* C for all t > 0. Since the

minimal unitary extension of the semigroup of isometries {5,}(>0 is {S^gR

and since, {Pr}/>0 is a semigroup of unitary operators, a well-known theorem

(see [3]) implies that there is a unique bounded linear transformation C

mapping % to L|(R) such that C* extends C* and such that CU* = S* C for

all t G R. Hence C = PC and Q = C* PC.

3. Applications. In this section we use Theorem I to obtain the results of

Xa Dao-xeng, Pincus, and Kato promised in the introduction. Along the way

we present a new proof of a theorem of Putnam.

We continue to use the notation established in §2; and if A is a bounded

linear transformation (possibly between different Hilbert spaces), we will write

%A) for the initial space of A; i.e., %(A) = (ker (A))1.

Lemma 3.1. Suppose equation (1) has a solution and let Q be its principal one.

Then %(Q) is the smallest subspace of % containing the range of R2 and invariant

under {Ut}t>0.

Proof. Theorem I could be used for part of the proof, but it is just as easy

to proceed without it. Since UtQU* < Q, t > 0, it follows that ker(Q) is

invariant under {(7*},>0. Since

R2f _ lim u,Qur/-Qf
t^0+ t

for all / such that the limit exists, it follows that ker(Q) C ker(P2). Upon

taking orthogonal complements, we find that the range of R2 C (ker(P2))x

£ S(<2) and that 3(C?) is invariant under {c/r}f>0. Now suppose <3L is any

subspace containing the range of R2 and invariant under {P,},>o- To show that

3(2) C 9H, it suffices to show that 'tJl1 C ker(Q). But since!)!*1 is invariant

under {Pr*},>0 and since the range of P2 is contained in 9IL 9H1 C ker(P2)

and R2 U*f= 0 for all / G 91L1 and t > 0. So, by equation (3), Qf
= Jo00 UtR2U*fdt = 0 for all/ G <31c\ and the proof is complete.

The next theorem was first proved by Putnam in [6, Theorem 5]. There he

assumed that H is bounded, but later, in [7, §2.13], he proved more general

results for unbounded H. These are slightly more general than ours, but his

method of proof is considerably different from ours (cf. [2, p. 27]).

Recall that the absolutely continuous spectral subspace %Ac for H, or {Ut}teR,

is the set of all vectors/in % such that <i||P(A)/|| is absolutely continuous with

respect to Lebesgue measure on R where P is the spectral measure for H. We

say H, or {P,},eR, is absolutely continuous if %AC = %.
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Theorem II. If equation (1) has a solution, then %Ac contains the range of

R , and so, if the smallest reducing subspace for {U,)IGR containing the range of

R2 is all of % then 77 is absolutely continuous.

Proof. We prove more than we need, but the excess will be used later. Let

Q be the principal solution to equation (1) and write Q = C* PC where C is

the bounded linear transformation from % to Lq,(R) constructed in the proof

of Theorem I. Since 3(S) = 5s(PC) is the smallest invariant subspace for

{U,}1>0 containing the range of 7?2 by Lemma 3.1, it is clear that since

CU* = S* C for all /, %(C) is the smallest reducing subspace for {U,)l£R

containing the range of R2. Call this subspace 9H, and let C = YW be the

polar decomposition of C; i.e., Y = (CC*)' and W is the unique partial

isometry with initial space 911 such that C = YW. Then since 5,* C = CU*

for all t, we find that Y commutes with (S^gn and that S* W = WU* for all

/. Hence W effects a unitary equivalence between {£/,|9H},eR and the

restriction of {S,}^!, to a reducing subspace 91 in L^R). Let g denote the

Fourier transform regarded as a unitary operator on L|(R); for t in R, let x,

denote the multiplication operator on L|(R) determined by e"x; let 91 = g9l;

and let V = %W. Then gS, = x,S, 91 reduces {x,},eR> and v is a Hilbert
space isomorphism from 9H onto 91 satisfying K(£/, |91t)K* = x, 191 for all t.

Since Lq,(R) is a direct integral and since 91 reduces {x,),eR (which generates

the algebra of diagonalizable operators on L^R)), we may write 91 as a direct

integral 91 = Xif 9l(x) dx where dx is Lebesgue measure on R and where %(x)

is a subspace of 6D for each x in R (see [1, Chapter II]). Thus, since for each

Borel set M C R, K(.E(A/)|<Dll)K* = IM\% where IM denotes the character-

istic function of M, it follows that {t/r|91l},eR is absolutely continuous. This

completes the proof.

We note that the closed support of the direct integral representation of 91,

which is the closed support of the spectral measure for 77, is precisely the

spectrum of 77|9U, A(77|9H); i.e., 91 = X^//^) 9l(x)rfjt.

Theorem III. Let X be a solution to equation (1) and suppose that the

smallest reducing subspace for H containing the range of R is all of%. Let V be

the Hilbert space isomorphism from %onto 91 = Xa(//) 9l(x)t7.x constructed in the

proof of Theorem II so that VUt V* = Xi\^-for a^ '• Then there are selfadjoint

decomposable operators on 91 given by functions M(-) and 7C(-) with 7C(x) > 0 a.e.

such that

iVXV*)f(x)

(4) i r i
= Mix) fix) - ±p.v. £H) K(x)K(y)(x - yY'fiy)dy   a.e.

for all f £ 91 where p.v. denotes principal value.

Proof. We continue with the notation established in the proof of Theorem

II. By Lemma 2.1, the selfadjoint operator A = X — Q commutes with

{{/,},eR and so VAV* commutes with {x,|9l},eR. Hence VAV* is decompos-

able and therefore is given by a selfadjoint operator-valued function L(-) on

A(77). On the other hand, VQV* = ($W){W* Y)PiYW)iW*%*)|9l
= (SFg*)(S7Jg*)(gyS*)|9L. But Y commutes with {S,},eR, so SFS* is
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decomposable, and is therefore given by an operator-valued function K(-) on

A(H). Moreover, since Y > 0, K(x) > 0 a.e. on A(P/). Finally, observe that

gPg* = (/ - ilg)/2 where § is the Hilbert transform. Putting these things

together, and writing M(-) = P(-) + K2(-)/2, we arrive at equation (4). This

completes the proof.

References

1. J. Dixmier, Les algebras d'operateurs dans I'espace Hilbertien, Gauthier-Villars, Paris, 1969.

2. R. G. Douglas, On the operator equation S*XT = X and related topics, Acta Sci. Math.

(Szeged) 30 (1969), 19—32. MR 40 #3347.
3.    -, On extending commutative semigroups of isometries, Bull. London Math. Soc. 1

(1969), 157—159. MR 39 #7458.
4. T. Kato, Smooth operators and commutators, Studia Math. 31 (1968), 535—546. MR 38

#2631.

5. J. D. Pincus, Commutators and systems of singular integral equations. I, Acta Math. 121

(1968), 219—249. MR 39 #2026.
6. C. R. Putnam, Commutators and absolutely continuous operators, Trans. Amer. Math. Soc.

87 (1958), 513—525. MR 20 #6659.

7.   -, Commutation properties of Hilbert space operators and related topics, Ergebnisse der

Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, New York, 1967. MR 36 #707.

8. Hsia Tao-hsing (Xa Dao-xeng), On non-normal operators. I, Acta Math. Sinica 12 (1962),

216—228 = Chinese Math. 3 (1963), 232—246. MR 26 #6773.

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242


