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ON NEUMER'S THEOREM

I. JUHASZ

Abstract. In this note we propose to show that Neumer's theorem on

regressive functions is actually a topological fact, by formulating and proving

an entirely topological statement of which Neumer's theorem is an imme-

diate corollary.

Let p be an ordinal with cf(p) > w. A subset S E p is called stationary in

p if it intersects every closed cofinal subset of p. Neumer's theorem is the

statement, very important and frequently used in set theory, saying that if/is

a regressive function on a stationary subset S of p, i.e. f(a) < a holds

whenever a G S, a ¥= 0, then there is a cofinal subset C E S and an ordinal

a < p such that/(a) < a for all a G C (cf. [1]).

Now let R be an arbitrary topological space and assume that we are given

a family § of infinite, closed, countably compact1 subsets of 7? with the

following property:

(i) For any two members Fx, F2 E ®s there exists an FGf such that

F E F, n F2.

It is obvious that for a p as above (taken with its order topology) the final

segments p\a for a < p form a system with these properties. This example

motivates, of course, our definitions.

Now a subset C C 7? is called ^-cofinal if C n F ¥= 0 for all F E % and

S E R is called ^-stationary if 5 D C ¥= 0 for all closed ?F-cofinal subsets C
of R.

If M is an arbitrary subset of 7?, an ^-regressive function on M is a map U

with domain M such that for each p E M the value Up of U at p is an open

neighborhood of p with the following property:

(ii) If p E M, F E fandp G Fthen Up n F = 0. It should be clear that
for our motivating example this is really the same as ordinary regressive

functions.

Now we are in a position to formulate the generalization of Neumer's

theorem.

Theorem. Let R, <5 be as above, S E R be ^-stationary and U be an W-

regressive function  on  S.   Then  there is an  ^-cofinal set  C E S such  that

r\{up--P G C)¥= 0.

Proof. Consider the closed set K = R\{J [Up ■ p E S}. Then K n S = 0,

hence K cannot be <f-cofinal as S is 'f-stationary. Therefore, there exists an
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1 By countably compact we mean here the property that every infinite subset has an

accumulation point.
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P G ^withP n F = 0, i.e. PC U{Up--p G S).
A set M C P is said to be P-free if for all p G S we have |M fl U \ < 1,

i.e. no two distinct members of M belong to the same U for p G S. Now being

P-free is obviously a finite property, hence, by the Teichmuller-Tukey lemma,

there is an M G F which is a maximal P-free set.

We claim that M is finite. Indeed, let M be infinite. Since P is countably

compact, M has an accumulation point q in P, hence, as P is covered by

U {Up ■ p G S], there is a p G S with q G Up. But then Up n M is infinite,

which shows that M cannot be {/-free.

Thus we have M a maximal, finite P-free subset of P, hence for every

x G F\M there are px G S and qx G M such that x and qx both belong to

U„. It follows immediately from (i) that the union of finitely many non-'JF-

cofinal sets is not 'S'-connal, and obviously F\M is 5-cofinal. Consequently

there is an ?F-cofinal subset G G F\M and a point q G M such that qx = q

for all x G G.

We claim that C = {px ■ x G G} is also 'J-cofinal. Indeed let Fx be an

arbitrary member of <5. We have G n Fx ¥= 0 because G is 5-cofinal; let

x G G n Fx. Then x G U-by the choice of px, hence Up C\ Fx ¥= 0, which

in turn implies px G P, by the definition of regressive functions, consequently

C fl Pi ¥= 0. Moreover we also have <? G n {UPx ■ px G C], which completes

the proof of the Theorem.

Remark. Fodor's theorem (cf. [2]) is an improvement upon Neumer's

theorem for ordinals p with cf(p) > to saying that if / is regressive on a

stationary S G p, then there is actually a stationary set S" C Son which the

values of / remain bounded below p. It would be interesting to see whether

Fodor's theorem is also valid in this topological setting, maybe under some

additional assumptions.
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