ON NEUMER'S THEOREM

I. JUHÁSZ

ABSTRACT. In this note we propose to show that Neumer's theorem on regressive functions is actually a topological fact, by formulating and proving an entirely topological statement of which Neumer's theorem is an immediate corollary.

Let ρ be an ordinal with $cf(\rho) > \omega$. A subset $S \subset \rho$ is called stationary in ρ if it intersects every closed cofinal subset of ρ . Neumer's theorem is the statement, very important and frequently used in set theory, saying that if f is a regressive function on a stationary subset S of ρ , i.e. $f(\alpha) < \alpha$ holds whenever $\alpha \in S$, $\alpha \neq 0$, then there is a cofinal subset $C \subset S$ and an ordinal $\sigma < \rho$ such that $f(\alpha) < \sigma$ for all $\alpha \in C$ (cf. [1]).

Now let R be an arbitrary topological space and assume that we are given a family \mathcal{F} of infinite, closed, countably compact¹ subsets of R with the following property:

(i) For any two members F_1 , $F_2 \in \mathcal{F}$ there exists an $F \in \mathcal{F}$ such that $F \subset F_1 \cap F_2$.

It is obvious that for a ρ as above (taken with its order topology) the final segments $\rho \setminus \alpha$ for $\alpha < \rho$ form a system with these properties. This example motivates, of course, our definitions.

Now a subset $C \subset R$ is called F-cofinal if $C \cap F \neq \emptyset$ for all $F \in \mathcal{F}$, and $S \subset R$ is called F-stationary if $S \cap C \neq \emptyset$ for all closed F-cofinal subsets C of R.

If *M* is an arbitrary subset of *R*, an \mathfrak{F} -regressive function on *M* is a map *U* with domain *M* such that for each $p \in M$ the value U_p of *U* at *p* is an open neighborhood of *p* with the following property:

(ii) If $p \in M$, $F \in \mathfrak{F}$ and $p \notin F$ then $U_p \cap F = \emptyset$. It should be clear that for our motivating example this is really the same as ordinary regressive functions.

Now we are in a position to formulate the generalization of Neumer's theorem.

THEOREM. Let R, \mathfrak{F} be as above, $S \subset R$ be \mathfrak{F} -stationary and U be an \mathfrak{F} -regressive function on S. Then there is an \mathfrak{F} -cofinal set $C \subset S$ such that $\cap \{U_p : p \in C\} \neq \emptyset$.

PROOF. Consider the closed set $K = R \setminus \bigcup \{U_p : p \in S\}$. Then $K \cap S = \emptyset$, hence K cannot be \mathcal{F} -cofinal as S is \mathcal{F} -stationary. Therefore, there exists an

Received by the editors November 26, 1974.

AMS (MOS) subject classifications (1970). Primary 54D30, 04A10.

 $^{^{1}}$ By countably compact we mean here the property that every infinite subset has an accumulation point.

 $F \in \mathcal{F}$ with $K \cap F = \emptyset$, i.e. $F \subset \bigcup \{U_p : p \in S\}$.

A set $M \subset F$ is said to be U-free if for all $p \in S$ we have $|M \cap U_p| \leq 1$, i.e. no two distinct members of M belong to the same U_p for $p \in S$. Now being U-free is obviously a finite property, hence, by the Teichmüller-Tukey lemma, there is an $M \subset F$ which is a maximal U-free set.

We claim that M is finite. Indeed, let M be infinite. Since F is countably compact, M has an accumulation point q in F, hence, as F is covered by $\bigcup \{U_p : p \in S\}$, there is a $p \in S$ with $q \in U_p$. But then $U_p \cap M$ is infinite, which shows that M cannot be U-free.

Thus we have M a maximal, finite U-free subset of F, hence for every $x \in F \setminus M$ there are $p_x \in S$ and $q_x \in M$ such that x and q_x both belong to U_{p_x} . It follows immediately from (i) that the union of finitely many non- \mathfrak{F} -cofinal sets is not \mathfrak{F} -cofinal, and obviously $F \setminus M$ is \mathfrak{F} -cofinal. Consequently there is an \mathfrak{F} -cofinal subset $G \subset F \setminus M$ and a point $q \in M$ such that $q_x = q$ for all $x \in G$.

We claim that $C = \{p_x : x \in G\}$ is also F-cofinal. Indeed let F_1 be an arbitrary member of F. We have $G \cap F_1 \neq \emptyset$ because G is F-cofinal; let $x \in G \cap F_1$. Then $x \in U_{p_x}$ by the choice of p_x , hence $U_{p_x} \cap F_1 \neq \emptyset$, which in turn implies $p_x \in F_1$ by the definition of regressive functions, consequently $C \cap F_1 \neq \emptyset$. Moreover we also have $q \in \bigcap \{U_{p_x} : p_x \in C\}$, which completes the proof of the Theorem.

REMARK. Fodor's theorem (cf. [2]) is an improvement upon Neumer's theorem for ordinals ρ with $cf(\rho) > \omega$ saying that if f is regressive on a stationary $S \subset \rho$, then there is actually a stationary set $S' \subset S$ on which the values of f remain bounded below ρ . It would be interesting to see whether Fodor's theorem is also valid in this topological setting, maybe under some additional assumptions.

REFERENCES

1. W. Neumer, Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Z. 54 (1951), 254-261. MR 13, 331.

2. G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged) 17 (1956), 139-142. MR 18, 551.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, 1503 BUDAPEST, REÁLTANODA U. 13–15, HUNGARY