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SEQUENTIAL ORDER AND SPACES Sn

M. RAJAGOPALAN

Abstract. It is shown that the space \p* is a sequential space of order 2

which does not contain a copy of S2. This solves a problem of Franklin and

J. R. Boone. It is shown that there is a sequential space of order 4 and not

of sequential order 3 but which still does not contain S3. It is shown that for

strongly sequential, and also for countable spaces, the problem of Franklin

and Boone has an affirmative answer. Some open problems are raised.

Sequential spaces have been studied by Arhangelskii [1], Franklin [2], [3]

and Kannan [5], [6]. Frechet spaces are sequential spaces of order 1. There are

plenty of sequential spaces which are not Frechet. The easiest such space is

the space S2 of Arens [7]. Many authors observed that a sequential, Hausdorff

space which is not Frechet contains a copy of S2 in general. This has led to

the conjecture that a Hausdorff, sequential space which is not Frechet must

contain a copy of S2. In this paper we show that this is not true. However we

show that if the space is further countable then the conjecture is true. We also

prove that if X is a sequential, non-Frechet, Hausdorff space which is strongly

sequential, then X contains a copy of S2. Given an integer n > 0, we construct

a Hausdorff sequential space of sequential order > n and not containing Sn+X.

We denote the set of integers by Z and the set of positive integers by Z+. We

follow [10] in general for topological concepts.

Definition 1. A topological space with a base point is a topological

space X with an element x0 chosen out of it. We write iX,x0) for the space X

with a base point x0. Two topological spaces with base points iX,x0) and

(Y,y0) are said to be isomorphic if there is a homeomorphism/ from X onto

Y such that/(x0) = Y0. In this case we write (X,x0) ~ (Y,y0).

Definition 2.     Let iX,x0) be a topological space with a base point. Let Y

be a topological space and let A be a subset of Y. For each y E A choose a

topological space with a base point iXy,xy) so that the following hold:

(i)  iXy,xy) ~ iX,x0) for ally E A.

iii) Xy n Xs = 0 for all s, y E A so that s =£ y.

Let  W be the free union of the spaces iXy)yBA. Let B E W be the set

[xy\y E A}. Let/: b -» Y be the map fixy) = y for all>> G A. Then the join

of W and Y through / is called the space obtained from Y by attaching a copy

of X through x0 at each point of A.
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Notation 3. We denote by S = Z+ U {00} the one point compactification

of the discrete space Z+ of all positive integers. We call S the space of a

convergent sequence and 00 is called the point at infinity of S or the limit

point of S. The only nonisolated point of S is 00. Sometimes we will use S

itself to denote the topological space with base point (5, 00). The meaning of

5 will be clear from the context and will not be confusing. More generally if

X is a locally compact, noncompact Hausdorff space and Y = X U {00} is the

one point compactification of X, where 00 is the point at infinity of Y, then we

may write only Y to denote the space with base point (Y, 00). Again the

meaning will be clear from the context.

Definition 4. The space obtained from S by attaching a copy of S

through its limit point at each isolated point of S is called S2. (This is also

called the Arens' space.) Let n be an integer > 1 and suppose that the space

Sn has been defined. The space obtained from Sn by attaching a copy of S

through its limit point at each isolated point of Sn is called Sn+X.

Definition 5. Let X be a topological space and A G X. We denote by A'

or A the set of all limits of convergent sequences from ,4. Let a be an ordinal

> 1 and suppose we have defined Ay for all ordinals y < a. Then we put

A" = (\Jy<aA )'. A" is called the ath sequential derivative of A. The space X

is called sequential if given a set P C X there is an ordinal number B so that

B@ = B, where Pis the topological closure of P. The space X is called Frechet

if B' = B for all subsets B C X. If X is sequential then the least ordinal y so

that By = B for all B G X is called the sequential order of X. It is denoted as

o(X-). (See [1].)
Definition 6. Two subsets A, B G Z+ are said to be equivalent if

(A U B) - (A n P) is finite. We write A fa B in this case.

Lemma 7. There exists a family '3 of subsets of Z+ with the following

properties:

(i)  |?F| = C (the cardinality of the set of all real numbers).

(ii) If A, B G % then either A = B or A * B.

(iii) If A, B G 'Sand A =t B then A (1 B is finite.
(iv) If D C Z+ and D n A is finite for all A G % such that A * D, then

there is a set C G <3r such that D fa C.

Proof. A complete proof of this lemma will take us too long. A proof of

this can be found in [4] and [9].

Definition 8. Let ?Fbe a family of subsets of Z+ as in Lemma 7. For

each A G % let us consider a symbol uA. Let ^ = {uA\A G IF) U Z+. We

assume that u>A ̂ uB if A, B G <2F and A =£ B and toA & Z+ for all A G W.

We make ¥ a topological space as follows: We declare {n) to be open for all

n G Z+. Given A G % a n.h.d. base of uA consists of sets of the form

{uA} U P where EGA and A — F is finite.

Remark. The space <&, equivalence relation as of Definition 6, and the

collection fare known earlier. The idea of sequential order is given in [1]. We

have given them all here together only for the reader's convenience. Now we

are ready to give our promised examples and theorems.
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Lemma 9. Let ^f* = Sr" U {00} be the one point compactification of <if. Let

A E Z+ be infinite. Then we have that either, (i) there is a finite collection

Fx, F2, .. ., Fn of subsets of Z+ so that uF, uF , .. ., wFn E ty and \J"=xFt — A

is finite, or (ii) A contains a disjoint collection Ax, A2, ..., An ■ ■ ■, of infinite

subsets, and there are subsets Fx, F2, ... belonging to ?Fso that An E Fr for all

n = 1, 2, 3, .... If case (i) does not happen then 00 is a cluster point of A. Thus

00 G A if and only if there exists an infinity of Fx, F2, F3, ..., Fn, ... G 9 such

that F„ fl A is infinite for all n = 1, 2, 3,_

Proof. Obvious.

Theorem 10. There is a compact Hausdorff sequential, non-Frechet space

which does not contain a subspace homeomorphic to S2.

Proof. We shall show that the compact, Hausdorff space ^1* of Lemma 9

is such a space. It is easy to see that ^* is a sequential space of sequential

order 2. From Lemma 9, it follows that 00 is a cluster point of Z+ and that

no sequence in Z+ converges to 00. So ^l* is not a Frechet space.

Now it is not obvious to see that ^l* does not contain a subspace

homeomorphic to S2. Now assume that, if possible, X contains a subspace Y

which is homeomorphic to S2. Since Y is not Frechet, it does not satisfy the

first axiom of countability in the subspace topology. Since the first axiom is

satisfied at all points of ^* except at 00, we have that 00 G Y. Now it is clear

that Y must contain a countably infinite set of nonisolated points where the

first axiom is satisfied. So there are countably many sets Ax, A2, ..., A„, ...

so that A„ E Z+ for all n = 1, 2, 3, ... and subsets Bx, B2, ..., Bn, ... of

Z+ so that Bn E f for all n = 1, 2, 3, ...; B„ D A„; B„ - An is finite;

An E Y and wBn G Y for all n = 1, 2, 3, .... Now put M = {00} U {uB \n

= 1,2, 3, ... } U U^L \An. It is clear that M is also a subspace of ^t* which is

homeomorphic to S2. However, we will show that M contains a subset of B

such that 00 G B and oBn G B for all n = 1, 2, 3, ... which will give us a

contradiction to the fact that M is homeomorphic to S2. Let us take

An = ian\>an2>- ■•.«„*>•■■ I* = 1,2,3,...} where n = 1, 2, 3, ... and ank

E Z+ for all n, k = 1, 2, 3, .... Let us write M as in the diagram below:

axx        aX2        a,3 •••        aXk ■ ■ ■

a2X        a22        a23 ■ ■ ■        a2k • • •

ws,        wb2       "b3 wflt • ■ • oo

Let us call a set of the form {wBj} U {axk,a2k,...} a column, where k = 1,2,

3, .... We will produce the required subset B by induction. For this purpose

we put C = U„*LXA„ and take Bx to be any infinite subset of C which meets

each column in a finite set. Now suppose that n is an integer > 1 and we have

defined an infinite subset B„ E C so that Bn intersects each column in a finite

set. If oo G Bn, then we take TJ„ to be the required set B. If not, we have by

Lemma 9 that there is a finite collection Fx, F2, ..., Fk of subsets of Z + such

that Ft G ^for all / = 1, 2, 3, ..., k and ijf= xFj- B„ is finite. Then Bn n FJ
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is infinite for some i = 1, 2, 3, ..., k. Without loss of generality we take that

Bn n Ft is infinite for all / = 1, 2, ..., k. Now choose some infinite subset

D G C so that the following hold:

(i) The intersection of D and the kth column is empty for all k = 1, 2,

(ii) P c(C- Uf=1P,)-P„.
(iii) P intersects each column in a finite set.

Now put Bn+X = Bn U P. Then we arrive at either a set Bk G C which is

infinite and has oo as its cluster point and which meets each column in a finite

set, or an infinite ascending sequence P. C B2 C • • • Bn G ■ ■ ■ of subsets of

C with the following properties:

(i) Bn+X — Bn is infinite for all n = 1, 2, 3, ....

(ii) There exists a sequence Fx, F2, ..., Fn, ...  of distinct elements of ?F

such that Fn H P„ is infinite for all n = 1, 2, 3, ....

(iii) Bn intersects each column in a finite set for all n = 1,2,....

(iv) Bn and Bm intersect theyth column in the same set for all m,n,j= 1,

2, 3, ... so thaty < n < m.

Now put P = {J„*LxBn. Then P intersects each column in a finite set and

has oo in its closure. Thus we have a contradiction and our theorem is proved.

Remark 11. The space ^* which served as our counterexample is also a

chain compact space in the sense of Mrowka, Rajagopalan and Soundararajan

[8]. However, it is not strongly scattered (see [8]). We will see later on that the

conjecture is true for strongly scattered spaces.

Theorem 12. Given an integer n > 2, there is a sequential space of sequential

order n but not containing a copy of Sn.

Proof. Theorem 10 gives such a space for n = 2. If n = 3 then let Y$ be

the space obtained from ^* by attaching a copy of the space S of a convergent

sequence at each isolated point of ^* through its limit point. Then Y3 is

sequential and is of sequential order 3. Let M G Y} be homeomorphic to 53.

If H G M is the set of all isolated points of M then M — H should be

homeomorphic to S2 and M — H should be contained in ty* which is not

possible by Theorem 10. For n > 3 the required space is obtained by

induction. If Yn_x is constructed already, then Y„ is obtained from Yn_x by

attaching a copy of S at each isolated point of Yn_x through its limit point.

Then a similar argument as for Y3 gives that Yn is a sequential space of

sequential order n but does not contain a copy of Sn.

Remark. In Theorems 10 and 12 we got an example of a sequential

space X of sequential order '«' but not containing a copy of Sn. But we may

conjecture that a space of sequential order n should contain a copy of at least

S„_x. That even this weaker expectation does not hold is shown by

Example 13. There exists a sequential space of sequential order 4 which

does not contain a copy of S3.

Proof. Consider the space ty* obtained from ^* by attaching a copy of ^*

at each isolated point of Sk* through its point at infinity. Then ^2 is sequential

and of sequential order 4. However, Sp"* does not contain a copy of S3. This

follows by an argument similar to that used in Theorem 12.

Remark 14. It is interesting to find out for what pairs (n,k) of integers n,k
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there is a sequential space X of sequential order n which does not contain a

copy of Sk with k < n. In particular, is there a sequential space X of

sequential order 3 but still not containing a copy of S21

So far we gave counterexamples to natural conjectures on sequential orders

and Sn. Now we prove some positive theorems.

Definition 15. Let Ibea sequential space. Then X is called strongly

sequential if \A\ = |^4'| for all ^4 EX.

Theorem 16. Let X be a strongly sequential Hausdorff space which is not

Frechet. Then X contains a copy of S2.

Proof. Since X is not Frechet there exists a set B E X so that B' ¥= B".

Then there is an element x0 G B" - B' and a sequence xx, x2, ..., xn, ... in

B' so that lt^o,, xn = x0. Then there is a set [amn\m,n E Z + ) of distinct

elements amn in B so that lt^^^, amn = xn for all m,n = 1,2,3,.... Let

E = [amn\m,n = 1,2,3,...} U [x„\n = 1,2,3,...} U {x0). Let

A   = {amn\m'n  =   1,2,...}.

Then no sequence in A can converge to a0. Now A' is countable. Let

L = A' — E. Suppose that L is finite. Then there is open set U of X containing

xQ so that L n U = 0. Put C = U n E. Then C is homeomorphic to S2.

For, the set of isolated points of C is C n A E U. So, if F E C n A and

x„ & F' for all n = 1,2,3, ..., then F = F and hence closed in C Thus we

see that C is homeomorphic to S2. Now let L be infinite. Let L = (/,, /2,...,

/„,...}. Put Ck = {amA:|w = 1,2,...} for all A: = 1, 2, 3, .... Let V„ be a
closed neighbourhood of /„ so that x0 & Vn and jca G f£ for all n = 1, 2, ...

and k = 1, 2, .... Then f£ n Q. is finite for all n, k = 1, 2, 3, .... Put

Fk = ck~ (ck n Uj-I *£)for all A: = 1, 2, 3,.... Finally put M = L)kK=xFk
U {xx,x2,... ,xn,...} U {x0}. Then Af n ^4 is the set of all isolated points of

M and x„ E (M n /I)' for all n = 1,2,3,.... Now suppose that T E M and

x„ G 7" for h = 1, 2,.... It is clear from the construction of M that /„ £ 7"

for rt = 1,2,.... Since X is sequential, it follows that T is closed. Thus M is

homeomorphic to S2.

Corollary 17. Let X be a countable, Hausdorff sequential space which is

not Frechet. Then X contains a copy of S2.

Proof. The space X is strongly sequential.

Corollary 18. Let X be a sequential, strongly scattered, compact Hausdorff

space which is not Frechet. Then X contains a copy of S2.
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