LARGE BASIS DIMENSION AND METRIZABILITY

GARY GRUENHAGE

ABSTRACT. In this paper it is proved that if X is a regular Lindelöf space having finite large basis dimension, then X is metrizable if and only if it is a Σ -space or a $w\Delta$ -space.

Introduction. A collection Γ of subsets of a set X is said to have rank 1 if whenever $g_1,g_2 \in \Gamma$ and $g_1 \cap g_2 \neq \emptyset$, then $g_1 \subset g_2$ or $g_2 \subset g_1$. According to P. J. Nyikos [8], a topological space X is said to have *large basis dimension* $\leq n$, denoted Bad $X \leq n$, if X has a basis which is the union of $\leq n+1$ rank 1 collections of open sets. (A. V. Arhangel'skii [1], [2], [3] uses the terminology "having a basis of big rank $\leq n+1$ " instead of "large basis dimension $\leq n$ ".) Bad X coincides with dim X and Ind X for all metric spaces. For the case n=0, the spaces become the nonarchimedean spaces of A. F. Monna [6].

It is the purpose of this paper to prove that every compact T_2 -space having finite large basis dimension is metrizable. This answers a question of Arhangel'skii, first proposed in [2], where he proves that every compact nonarchimedean space is metrizable, and repeated in [3]. Some generalizations of the above result are also obtained.

Main result. All our spaces are assumed to be T_1 . The main result of this paper is the following:

THEOREM 1. Let X be a regular Lindelöf space having finite large basis dimension. Then the following are equivalent:

- (i) X is metrizable,
- (ii) X is a Σ -space [7],
- (iii) X is a $w\Delta$ -space [4].

As an immediate corollary, we have the result stated in the introduction:

COROLLARY 1. Every compact T_2 -space having finite large basis dimension is metrizable.

By [3, Lemma 3], if X has a basis $\Gamma = \bigcup \{\Gamma_i | i = 1, 2, ..., n\}$ such that each Γ_i is a rank 1 collection, then $X = \bigcup \{X_i | i = 1, 2, ..., n\}$ where X_i is such that Γ_i contains a local basis of each point of X_i . Our method of proving Theorem 1 is to show that if X is a regular Lindelöf space satisfying (ii) or (iii), then X is first countable and each X_i is Lindelöf. From this it will follow (see Lemma 3) that for each X_i there is a point-countable collection of open

Presented to the Society, May 2, 1974; received by the editors August 12, 1974. AMS (MOS) subject classifications (1970). Primary 54E35, 54F45.

subsets of X which contains a basis of each point of X_i ; hence X has a point-countable basis, and is therefore metrizable by known results. It will be helpful to establish some lemmas.

LEMMA 1. Let Γ be a rank 1 collection of open subsets of a space X which contains a basis at a point $x_0 \in X$. Let $\Gamma' \subset \Gamma$ and suppose $x_0 \in \cap \Gamma'$. Then either $x_0 \in \operatorname{Int}(\cap \Gamma')$ or $\{x_0\} = \cap \Gamma'$. In the latter case, either Γ' contains a basis at x_0 , or x_0 is an isolated point.

PROOF. Suppose there exists $y \in \cap \Gamma'$, $y \neq x_0$. Choose $g \in \Gamma$ such that $x_0 \in g$ but $y \not\in g$. Then if $g' \in \Gamma'$, $g' \not\subset g$ and so $g \subset g'$. Hence $g \subset \cap \Gamma'$ and so $x_0 \in \operatorname{Int}(\cap \Gamma')$.

Now suppose $\{x_0\} = \bigcap \Gamma'$, but that Γ' does not contain a basis at x_0 . Then there is some $g \in \Gamma$ which contains x_0 but does not contain any element of Γ' . Thus $g \subset g'$ for all $g' \in \Gamma'$, so $g \subset \bigcap \Gamma' = \{x_0\}$ and x_0 is therefore isolated. Let Ω be the first uncountable ordinal, and let P_1 be the space obtained from the ordinal space $[0,\Omega]$ by isolating all ordinals less than Ω .

LEMMA 2. Let X be a regular Lindelöf space having finite large basis dimension. Then either X is first countable, or X contains a closed subspace homeomorphic to P_1 .

PROOF. Suppose X is not first countable at $x_0 \in X$. Let \mathfrak{A} be an open cover of $X - \{x_0\}$ such that for each $U \in \mathfrak{A}$, $x_0 \not\in \overline{U}$. By [3, Theorem 1], X is hereditarily metacompact. Let $\mathfrak{A} = \{V_\alpha | \alpha \in A\}$ be a minimal point finite open refinement of \mathfrak{A} . Since $\{x_0\} = \bigcap \{X - \overline{V_\alpha} | \alpha \in A\}$, $\mathfrak{A} = \{X_\alpha | \alpha \in A\}$ must be uncountable, for otherwise it would follow from Lemma 1 that x_0 has a countable basis. Choose $x_\alpha \in V_\alpha - \bigcup \{V_\beta | \beta \neq \alpha\}$. Then $S' = \{x_\alpha | \alpha \in A\}$ has no cluster point in $X - \{x_0\}$. Since X is Lindelöf, every neighborhood of x_0 contains all but countably many elements of S'.

Let $S = S' \cup \{x_0\}$. We claim that S is homeomorphic to P_1 . To prove this, we need only show that if C is an infinite subset of S' such that $\operatorname{card}(C) < \operatorname{card}(S')$, then C is closed in S. To this end, let Γ be a rank 1 collection of open sets which contains a basis at x_0 , and for each $c \in C$ choose $U_c \in \Gamma$ such that $x_0 \in U_c$ but $c \not\in U_c$. $U_C = \bigcap \{U_c | c \in C\}$ contains all but at most $\aleph_0 \cdot \operatorname{card}(C) = \operatorname{card}(C)$ elements of S', and so by Lemma 1, $x_0 \in \operatorname{Int}(U_C)$. Thus C is closed and the proof is finished.

LEMMA 3. Let X be a first countable space, and let X' be a subspace of X such that some rank 1 collection Γ_0 of open subsets of X contains a basis at each point of X'. Suppose also that X' is Lindelöf. Then there exists a point-countable collection of open subsets of X which contains a basis at each point of X'.

PROOF. Let \mathcal{C} be the set of all chains in Γ_0 (i.e., $C \in \mathcal{C}$ if C is a subset of Γ_0 and is totally ordered by inclusion), and let $\Gamma = \{ \cup C \mid C \in \mathcal{C} \}$. By [9, Lemma 2], Γ has rank 1. Let $\Gamma' = \{ g \cap X' \mid g \in \Gamma \}$. Clearly, Γ' is the set of all unions of chains in $\Gamma'_0 = \{ g \cap X' \mid g \in \Gamma_0 \}$. By [9, Lemma 2], the elements of Γ' are clopen (open and closed) subsets of X'. By [9, Theorems 3 and 4], X' can be partitioned into a collection \mathfrak{A}'_0 of disjoint elements of Γ' . Furthermore, we can ensure that this collection contains more than one element.

Clearly, any two elements of the corresponding collection \mathfrak{A}_0 of elements of Γ are also disjoint.

We proceed to construct, for each $\alpha < \Omega$, a collection \mathfrak{A}_{α} of disjoint elements of Γ . Suppose \mathfrak{A}_{α} has been defined for all $\alpha < \beta$. Let $\mathfrak{V}_{\beta} = \{\bigcap_{\alpha < \beta} U_{\alpha} | U_{\alpha} \in \mathfrak{A}_{\alpha}\}$, and let $\mathfrak{V}_{\beta}' = \{V \in \mathfrak{V}_{\beta} | V \cap X' \text{ contains more than one point}\}$. By [3, Lemma 4], $V \cap X'$ is clopen in X' whenever $V \in \mathfrak{V}_{\beta}'$. Thus $V \cap X'$ can be partitioned into a collection \mathfrak{A}_{V}' of (more than one) disjoint elements of Γ' . Since $V \cap X' \subset \operatorname{Int}(V)$, we can ensure that every element of the corresponding collection \mathfrak{A}_{V} of elements of Γ is contained in V. Let $\mathfrak{A}_{\beta} = \bigcup \{\mathfrak{A}_{V} | V \in \mathfrak{V}_{\beta}'\}$.

Suppose $V \in \mathcal{V}_{\beta}$, $V \cap X' = \{x_{V}\}$, and V contains more than one point of X. Then $x_{V} \in \text{Int}(V)$, and so there exists a local basis $\{g_{n}(V)\}_{n=1}^{\infty}$ of x_{V} such that $g_{n}(V) \subset V$ for all n. Let \mathcal{P}_{β} be the collection of all such $g_{n}(V)$'s.

Let $\mathfrak{V} = \bigcup \{\mathfrak{V}_{\beta} \cup \mathfrak{P}_{\beta} | \beta < \Omega\}$. Since \mathfrak{V}_{β} is a collection of disjoint sets, so is \mathfrak{V}_{β} ; also, \mathfrak{P}_{β} is point-countable, and $(\bigcup \mathfrak{P}_{\beta}) \cap (\bigcup \mathfrak{V}_{\beta}) = \emptyset$. We claim that \mathfrak{V} is point-countable. Choose $x_0 \in X$. If $x_0 \in \bigcup \mathfrak{P}_{\beta}$, then

We claim that \mathfrak{A} is point-countable. Choose $x_0 \in X$. If $x_0 \in \bigcup \mathfrak{P}_{\beta}$, then $x_0 \not\in \bigcup \{\mathfrak{A}_{\alpha} \cup \mathfrak{P}_{\alpha} | \alpha > \beta \}$. In this case, then, x_0 belongs to at most countably many elements of \mathfrak{A} . Therefore, if x_0 is contained in uncountably many elements of \mathfrak{A} , then for each $\alpha < \Omega$ there exists $U_{\alpha} \in \mathfrak{A}_{\alpha}$ such that $x_0 \in U_{\alpha}$. By the way the U_{α} 's were constructed, if $\alpha < \alpha' < \Omega$, then $U_{\alpha'} \cap X' \subseteq U_{\alpha} \cap X'$. Let $U_{\Omega} = \bigcap \{U_{\alpha} | \alpha < \Omega\}$. U_{Ω} cannot be clopen in X', for otherwise $(X' \cap U_{\Omega}) \cup \{X' - U_{\alpha} | \alpha < \Omega\}$ is an open cover of X' with no countable subcover.

However, if $U_{\Omega} \cap X'$ is not clopen, then again by [3, Lemma 4], $U_{\Omega} \cap X' = \{x'\}$ for some $x' \in X'$. For each $\alpha < \Omega$, choose $x_{\alpha} \in (U_{\alpha} \cap X') - (U_{\alpha+1} \cap X')$. It is easy to see that x' is the only cluster point of $S = \{x_{\alpha} | \alpha < \Omega\}$ in X'. Since X' is Lindelöf, every neighborhood of x' must contain all but countably many elements of S, contradicting the fact that X is first countable. Therefore \mathfrak{A} is point-countable as claimed.

Choose $x \in X'$. There exists a least ordinal β such that $x \not\in \bigcup \mathfrak{A}_{\beta}$. Let $\mathfrak{A}_x = \{U_{\alpha} | x \in U_{\alpha} \in \mathfrak{A}_{\alpha}, \alpha < \beta\}$, and let $\bigcap \mathfrak{A}_x = V \in \mathfrak{I}_{\beta}$. Then $V \cap X' = \{x\}$. Hence either $x \in g_n(V)$, $n = 1, 2, \ldots$, or $V = \{x\}$, whence x is discrete in X or \mathfrak{A}_x contains a local basis at x. Therefore $\mathfrak{A} \cup \{x \in X' | x \text{ is discrete in } X\}$ is a point-countable collection of open subsets of X which contains a local basis at each point of X', and the proof is finished.

PROOF OF THEOREM 1. The theorem is true if Bad X=0 [8, Theorem 1.3]. Suppose it is true whenever Bad $X \le k-1$. Let X be a regular Lindelöf space with Bad $X \le k$, i.e., X has a basis $\Gamma = \bigcup \{\Gamma_i | i=1,2,\ldots,k+1\}$ where each Γ_i has rank 1.

Since a paracompact $w\Delta$ -space is an M-space, and every M-space is a Σ -space, we need only prove that if X is a Σ -space, then X is metrizable. Since P_1 is not a Σ -space, by Lemma 2 X is first countable. Let X_i be the subspace of X such that $X \in X_i$ if and only if Γ_i contains a basis at X. We need only prove that X_i is Lindelöf, for then we can apply Lemma 3 to each X_i to show that X has a point-countable basis, from which it follows that X is metrizable [10].

 X_1 is a nonarchimedean space, hence paracompact [9, Theorem 4]. Therefore if X_1 is not Lindelöf, there is an uncountable subset T of X_1 which has no

cluster point in X_1 . Consider the closure \overline{T} of T in X. The points of T are discrete in \overline{T} , so $\bigcup \{\Gamma_2 \cup T, \Gamma_3, \ldots, \Gamma_{k+1}\}$ contains a basis (in the subspace \overline{T}) for each point of \overline{T} . Thus Bad $\overline{T} \leq k-1$, so by the induction hypothesis, \overline{T} is metrizable. Thus $\overline{T}-T$ is $G_{\underline{\delta}}$ in \overline{T} , and so there exists an uncountable subset T' of T which is closed in \overline{T} , and therefore in X, contradicting the fact that X is Lindelöf. Thus X_1 is Lindelöf. Similarly, X_2, \ldots, X_{k+1} are Lindelöf, and the proof is finished.

REFERENCES

- 1. A. V. Arhangel'skiĭ, k-dimensional spaces, Vestnik Moskov. Univ. Ser. I Mat. Meh., 1962, no. 2, 3-6. (Russian) MR26 #738.
- 2. _____, Ranks of systems of sets and dimensionality of spaces, Fund. Math. 52(1963), 257-275. (Russian) MR27 #2960.
- 3. A. V. Arhangel'skii and V. V. Filippov, Spaces with bases of finite rank, Mat. Sb. 87(129)(1972), 147-158 = Math. USSR Sb. 16(1972), 147-158. MR45 #5940.
- 4. C. J. R. Borges, On metrizability of topological spaces, Canad. J. Math. 20(1968), 795-804. MR37 #6910.
 - 5. J. Dungundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR33 #1824.
- 6. A. F. Monna, Remarques sur les métriques non-archimédiennes. I, II, Nederl. Akad. Wetensch. Proc. 53, 470-481, 625-637 = Indag. Math. 12(1950), 122-133, 179-191. MR 12, 41, 1002.
 - 7. K. Nagami, Σ-spaces, Fund. Math. 65(1969), 169-192. MR41 #2612.
- 8. P. J. Nyikos, Some surprising base properties in topology, Studies in Topology, Academic Press, New York, 1975.
- 9. P. J. Nyikos and H. C. Reichel, On the structure of zero-dimensional spaces, Indag. Math. (to appear).
- 10. T. Shiraki, M-spaces, their generalization and metrization theorems, Sci. Rep. Tokyo Kyoiku Daigaku Ser. A 11(1971), 57-67. MR46 #4495.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616