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LARGE BASIS DIMENSION AND METRIZABILITY

GARY GRUENHAGE

ABSTRACT. In this paper it is proved that if X is a regular Lindelof space
having finite large basis dimension, then X is metrizable if and only if it is a
Z-space or a wA-space.

Introduction. A collection I' of subsets of a set X is said to have rank 1 if
whenever g,,g, € I'and g, N g, #* &, then g, C g, or g, C g,. According to
P. J. Nyikos [8], a topological space X is said to have large basis dimension
< n, denoted Bad X < n, if X has a basis which is the union of < n + 1
rank 1 collections of open sets. (A. V. Arhangel'skii [1], [2], [3] uses the
terminology “having a basis of big rank < n + 1” instead of “large basis
dimension < n”.) Bad X coincides with dim X and Ind X for all metric
spaces. For the case n = 0, the spaces become the nonarchimedean spaces of
A. F. Monna [6].

It is the purpose of this paper to prove that every compact T,-space having
finite large basis dimension is metrizable. This answers a question of Arhan-
gel’skil, first proposed in [2], where he proves that every compact nonarchi-
medean space is metrizable, and repeated in [3]. Some generalizations of the
above result are also obtained.

Main result. All our spaces are assumed to be T,. The main result of this
paper is the following:

THEOREM 1. Let X be a regular Lindelof space having finite large basis
dimension. Then the following are equivalent:

(1) X is metrizable,

(i) X is a Z-space [7],

(iii) X is a wA-space [4].

As an immediate corollary, we have the result stated in the introduction:

COROLLARY 1. Every compact Ty-space having finite large basis dimension is
metrizable.

By [3, Lemma 3], if X has a basis ' = U{T,[i = 1,2,..., n} such that
each I'; is a rank 1 collection, then X = U{X,|i = 1,2,..., n} where X, is
such that T'; contains a local basis of each point of X,. Our method of proving
Theorem 1 is to show that if X is a regular Lindelof space satisfying (ii) or
(i), then X is first countable and each X, is Lindeldf. From this it will follow
(see Lemma 3) that for each X, there is a point-countable collection of open
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subsets of X which contains a basis of each point of X;; hence X has a
point-countable basis, and is therefore metrizable by known results. It will be
helpful to establish some lemmas.

LemMA 1. Let T be a rank 1 collection of open subsets of a space X which
contains a basis at a point xy, € X. Let I'' C I' and suppose x, € NT’. Then
either xy € Int(NI") or {xo} = NI". In the latter case, either I" contains a
basis at xy, or x, is an isolated point.

PROOF. Suppose there exists y € NI, y # x, Choose g € I' such that
xoE gbuty £ g. Thenifg' €I", g’ Z gandsog C g’. Henceg ¢ NI’ and
50 xo € Int(NIM).

Now suppose {x,} = NI, but that I does not contain a basis at x,. Then
there is some g € I' which contains x, but does not contain any element of I".
Thus g c g’ forallg’ € I", so g € NI" = {x,} and x; is therefore isolated.

Let Q be the first uncountable ordinal, and let P, be the space obtained
from the ordinal space [0,82] by isolating all ordinals less than €.

LEMMA 2. Let X be a regular Lindelof space having finite large basis
dimension. Then either X is first countable, or X contains a closed subspace
homeomorphic to P,.

PROOE. Suppose X is not first countable at x, € X. Let QL be an open
cover of X — {x,} such that for each U € U, x4 & U. By [3, Theorem 1], X
is hereditarily metacompact. Let V' = {V,|a € 4} be a minimal point finite
open refinement of QL. Since {x,} = N{X — V,Ja € 4}, T must be un-
countable, for otherwise it would follow from Lemma 1 that x, has a
countable basis. Choose x, € V, — U{V,|B # a}. Then §" = {x,|a € 4}
has no cluster point in X — {x,}. Since X is Lindelof, every neighborhood of
X, contains all but countably many elements of S".

Let S = S’ U {x,}. We claim that S is homeomorphic to P,. To prove this,
we need only show that if C is an infinite subset of S’ such that card(C) <
card(S’), then C is closed in S. To this end, let ' be a rank 1 collection of
open sets which contains a basis at x,, and for each ¢ € C choose U, € T
such that x, € U, but ¢ € U,. Uo = N{U,Jc € C} contains all but at most
%, - card(C) = card(C) elements of S’, and so by Lemma 1, x, € Int(Uc).
Thus C is closed and the proof is finished.

LEMMA 3. Let X be a first countable space, and let X' be a subspace of X such
that some rank 1 collection T of open subsets of X contains a basis at each point
of X'. Suppose also that X' is Lindelof. Then there exists a point-countable
collection of open subsets of X which contains a basis at each point of X'.

PROOF. Let © be the set of all chains in [ (i.e., C € € if C is a subset of
T, and is totally ordered by inclusion), and let ' = {U C|C € (}. By [5,
Lemma 2], T has rank 1. Let I" = {g N X'|g € I'}. Clearly, I"" is the set of
all unions of chains in Ty = {g N X'|g € T,}. By [9, Lemma 2], the elements
of T” are clopen (open and closed) subsets of X'. By [9, Theorems 3 and 4], X’
can be partitioned into a collection Qg of disjoint elements of I'". Further-
more, we can ensure that this collection contains more than one element.
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Clearly, any two elements of the corresponding collection U, of elements of
T are also disjoint.

We proceed to construct, for each a < £, a collection U, of disjoint
elements of T. Suppose AU, has been defined for all a < 8. Let Vj
= {N,apUU, € U}, and let V5 = {V € V|V N X’ contains more
than one point}. By [3, Lemma 4], ¥ n X’ is clopen in X’ whenever
V € V;. Thus ¥ N X’ can be partitioned into a collection U;, of (more
than one) disjoint elements of I'". Since V' N X’ C Int(V'), we can ensure that
every element of the corresponding collection U, of elements of T is
contained in V. Let Ay = U (U, |V € V3)}.

Suppose V € V,, ¥V N X' = {x,}, and V contains more than one point of
X. Then x,, € Int(V'), and so there exists a local basis { g,(V)}>_, of x,, such
that g (V) C V for all n. Let & p be the collection of all such g, (V)’s.

Let W = U{Uz U Pg|B < Q}. Since Vy is a collection of disjoint sets,
sois Ag; also, P, is point-countable, and (U Pp) N (U Up) = &.

We claim that églf is point-countable. Choose x, € X. If xo € U P, then
X0 & U{U, U P |a > B}. In this case, then, x, belongs to at most count-
ably many elements of U . Therefore, if x, is contained in uncountably many
elements of °Uf, then for each a < Q there exists U, € U, such that
Xy € U,. By the way the U,’s were constructed, if a« < «’ < £, then U, N X’
G U, N X' Let Uy= N{U,Ja <8}. Uy cannot be clopen in X', for
otherwise (X' N Ugy) U {X' — U,Ja < Q} is an open cover of X’ with no
countable subcover.

However, if Uy N X’ is not clopen, then again by [3, Lemma 4], U, N X’
= {x’} for some x’ € X'. For each a <, choose x, € (U, N X') —
(Upy1 N X). It is easy to see that x” is the only cluster point of § = {x_ |a
< @} in X". Since X' is Lindelof, every neighborhood of x’ must contain all
but countably many elements of S, contradicting the fact that X is first
countable. Therefore °f is point-countable as claimed.

Choose x € X'. There exists a least ordinal 8 such that x & U GILB. Let
U, =(Ux E U, € U,,a < B),andlet N U, =V € Vz. Then V' N X’
= {x}. Hence either x € g,(V), n=12,..., or V= {x}, whence x is
discrete in X or 9, contains a local basis at x. Therefore W U {x € X'|x is
discrete in X'} is a point-countable collection of open subsets of X which
contains a local basis at each point of X', and the proof is finished.

PROOF OF THEOREM 1. The theorem is true if Bad X = 0 [8, Theorem 1.3].
Suppose it is true whenever Bad X < k — 1. Let X be a regular Lindelof
space with Bad X < k, i.e, X has a basis ' = U(T[|i=12,...,k + 1}
where each I'; has rank 1.

Since a paracompact wA-space is an M-space, and every M-space is a
2-space, we need only prove that if X is a Z-space, then X is metrizable. Since
P, is not a S-space, by Lemma 2 X is first countable. Let X, be the subspace
of X such that x € X; if and only if T'; contains a basis at x. We need only
prove that X; is Lindeldf, for then we can apply Lemma 3 to each X; to show
that X has a point-countable basis, from which it follows that X is metrizable
[10].

X, is a nonarchimedean space, hence paracompact [9, Theorem 4]. There-
fore if X, is not Lindelof, there is an uncountable subset T of X, which has no
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cluster point in X,. Consider the closure T of T in X. The points of T are

discrete in 7, s0 U{I, U T, I;, ..., I',,} contains a basis (in the subspace
T) for each point of T. Thus Bad T < k — 1, so by the induction hypothesis,
T is metrizable. Thus T — T is G; in T, and so there exists an uncountable
subset T’ of T which is closed in T, and therefore in X, contradicting the fact
that X is Lindelof. Thus X is Lindelof. Similarly, X,, . . ., X, ., are Lindelof,

and the proof is finished.
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