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LARGE BASIS DIMENSION AND METRIZABILITY

GARY GRUENHAGE

Abstract. In this paper it is proved that if A- is a regular Lindelof space

having finite large basis dimension, then X is metrizable if and only if it is a

2-space or a wA-space.

Introduction. A collection T of subsets of a set X is said to have rank 1 if

whenever gx,g2 G T and g, n g2 ¥= 0, then g, c g2 or g2 c g,. According to

P. J. Nyikos [8], a topological space X is said to have large basis dimension

< n, denoted Bad X < n, if X has a basis which is the union of < n + 1

rank 1 collections of open sets. (A. V. Arhangel'skii [1], [2], [3] uses the

terminology "having a basis of big rank < n + 1" instead of "large basis

dimension < n".) Bad X coincides with dim X and Ind X for all metric

spaces. For the case n = 0, the spaces become the nonarchimedean spaces of

A. F. Monna [6].

It is the purpose of this paper to prove that every compact F2-space having

finite large basis dimension is metrizable. This answers a question of Arhan-

gel'skii, first proposed in [2], where he proves that every compact nonarchi-

medean space is metrizable, and repeated in [3]. Some generalizations of the

above result are also obtained.

Main result. All our spaces are assumed to be F,. The main result of this

paper is the following:

Theorem  1. Let X be a regular Lindelof space having finite large basis

dimension. Then the following are equivalent:

(i) X is metrizable,

(ii) X is a "Z-space [7],

(iii) X is a wA-space [4].

As an immediate corollary, we have the result stated in the introduction:

Corollary 1. Every compact T2-space having finite large basis dimension is

metrizable.

By [3, Lemma 3], if X has a basis T = (J {T,.|/ = 1,2, . . . , «} such that

each T, is a rank 1 collection, then X = lj {Xt\i = 1,2,. . . , n) where Xt is

such that T, contains a local basis of each point of Xr Our method of proving

Theorem 1 is to show that if X is a regular Lindelof space satisfying (ii) or

(iii), then X is first countable and each X, is Lindelof. From this it will follow

(see Lemma 3) that for each X. there is a point-countable collection of open
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subsets of X which contains a basis of each point of A,; hence X has a

point-countable basis, and is therefore metrizable by known results. It will be

helpful to establish some lemmas.

Lemma 1. Let T be a rank 1 collection of open subsets of a space X which

contains a basis at a point x0 G X. Let FcT and suppose x0 G fl T'. Then

either x0 G Int(nr') or {x0} = D T'. In the latter case, either T' contains a

basis at x0, or x0 is an isolated point.

Proof. Suppose there exists y G n T', y =£ x0. Choose g G T such that

x0 G g buty G g. Then if g' G V, g' <Z g and sogc g'. Hence g c D T' and

so x0 g int(nr').
Now suppose {x0} = 0 T', but that V does not contain a basis at x0. Then

there is some g G T which contains x0 but does not contain any element of V.

Thus gag' for all g' G F, so g c D T' = {x0} and x0 is therefore isolated.

Let fi be the first uncountable ordinal, and let Px be the space obtained

from the ordinal space [0,12] by isolating all ordinals less than fi.

Lemma 2. Let X be a regular Lindelof space having finite large basis

dimension. Then either X is first countable, or X contains a closed subspace

homeomorphic to Px.

Proof. Suppose A is not first countable at x0 G A. Let % be an open

cover of X - {x0} such that for each U G % , x0 G U. By [3, Theorem 1], A

is hereditarily metacompact. Let T = {Va\a G A) be a minimal point finite

open refinement of %. Since {x0} = D {A - Va\a G A), T must be un-

countable, for otherwise it would follow from Lemma 1 that xQ has a

countable basis. Choose xa G Va — \J {VB\B ¥= ex}. Then 5" = {xa\a G A)

has no cluster point in X — {x0}. Since A is Lindelof, every neighborhood of

x0 contains all but countably many elements of 5".

Let S = S' u {x0}. We claim that S is homeomorphic to Px. To prove this,

we need only show that if C is an infinite subset of S' such that card(C) <

card(S"), then C is closed in S. To this end, let T be a rank 1 collection of

open sets which contains a basis at x0, and for each c G C choose Uc G T

such that x0 G Uc but c £ Uc. Uc = C\ {Uc\c G C} contains all but at most

N0 • card(C) = card(C) elements of S', and so by Lemma 1, x0 G lnt(Uc).

Thus C is closed and the proof is finished.

Lemma 3. Let X be a first countable space, and let X' be a subspace of X such

that some rank 1 collection T0 of open subsets of X contains a basis at each point

of A". Suppose also that X' is Lindelof. Then there exists a point-countable

collection of open subsets of X which contains a basis at each point of X'.

Proof. Let Q be the set of all chains in T0 (i.e., C G G if C is a subset of

ro and is totally ordered by inclusion), and let T = {IJ C|C G G}. By [9,

Lemma 2], T has rank 1. Let T' = {g n A'|g G T). Clearly, T' is the set of

all unions of chains inT'0 = {g n X'\g E: Y0}. By [9, Lemma 2], the elements

of T' are clopen (open and closed) subsets of A'. By [9, Theorems 3 and 4], A'

can be partitioned into a collection %0' of disjoint elements of T'. Further-

more, we can ensure that this collection contains more than one element.
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Clearly, any two elements of the corresponding collection %0 of elements of

T are also disjoint.

We proceed to construct, for each a < fl, a collection Glia of disjoint

elements of T. Suppose %a has been defined for all a < R. Let T^

= {<la<BUa\Ua G %,„}, and let "Cp = {V G *Yp\ V n X' contains more

than one point}. By [3, Lemma 4], V n X' is clopen in A" whenever

V G 'Y'p. Thus V n X' can be partitioned into a collection ^lv of (more

than one) disjoint elements of I". Since V n X' c Int(F), we can ensure that

every element of the corresponding collection %K of elements of T is

contained in V. Let % = lj {^MF G T^}.

Suppose V G *YB, V n X' = {xK}, and K contains more than one point of

X. Then xv G Int( F), and so there exists a local basis {g„( F)}~=, of xv such

that g„(V) c V for all n. Let <$B be the collection of all such g„(F)'s.

Let % = U {G&p U Wg | /8 < fl}. Since % is a collection of disjoint sets,

so is GlLp; also, 9B is point-countable, and (U $p) n (U %/3) = 0.

We claim that <W is point-countable. Choose x0 G A1. If x0 G lj ^, then

x0 G U {%» U ^a\a > R). In this case, then, x0 belongs to at most count-

ably many elements of %. Therefore, if x0 is contained in uncountably many

elements of %, then for each a < fl there exists Ua G 6lia such that

x0 G Ua. By the way the Ufs were constructed, if a < a' < fl, then Ua, n A"

C_ t/a n A"'. Let Ua = n{c/a|a < fl}. Ua cannot be clopen in X', for

otherwise (A" n Ua) u {A" - [/a|a < fl} is an open cover of A" with no

countable subcover.

However, if Ua n A" is not clopen, then again by [3, Lemma 4], Ua n A"

= {x'} for some x' G A". For each a < fl, choose xa G ((/a n A") —

(Ua + X n A"). It is easy to see that x' is the only cluster point of S = {xja

< fl} in A". Since X' is Lindelof, every neighborhood of x' must contain all

but countably many elements of S, contradicting the fact that X is first

countable. Therefore W is point-countable as claimed.

Choose x G A". There exists a least ordinal R such that x G U ^Fg. Let

^x = [Ua\x G Ua G %a,a < R), and let D %x = V G \. Then F n A"

= {x}. Hence either x G g„(F), n = 1,2, . . . , or V = {x}, whence x is

discrete in X or %x contains a local basis at x. Therefore % lj {x G A"|x is

discrete in A'} is a point-countable collection of open subsets of X which

contains a local basis at each point of X', and the proof is finished.

Proof of Theorem 1. The theorem is true if Bad X = 0 [8, Theorem 1.3].

Suppose it is true whenever Bad X < k — 1. Let X be a regular Lindelof

space with Bad X < k, i.e., X has a basis F = U (r,|/ = 1,2, . . . ,k + 1}
where each T, has rank 1.

Since a paracompact wA-space is an AT-space, and every AT-space is a

2-space, we need only prove that if A" is a 2-space, then X is metrizable. Since

Px is not a 2-space, by Lemma 2 A" is first countable. Let X( be the subspace

of X such that x G A', if and only if T, contains a basis at x. We need only

prove that A", is Lindelof, for then we can apply Lemma 3 to each A", to show

that X has a point-countable basis, from which it follows that X is metrizable

[10].
Xx is a nonarchimedean space, hence paracompact [9, Theorem 4]. There-

fore if Xx is not Lindelof, there is an uncountable subset T of A", which has no
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cluster point in A,. Consider the closure T of T in X. The points of T are

discrete in T, so lj{r2u T,T3,. .. ,Tk+l) contains a basis (in the subspace

T) for each point of T. Thus Bad T < k - 1, so by the induction hypothesis,

T is metrizable. Thus T — T is Gs in 7", and so there exists an uncountable

subset T' of T which is closed in T, and therefore in A, contradicting the fact

that X is Lindelof. Thus A", is Lindelof. Similarly, X2, . . . , Xk+X are Lindelof,

and the proof is finished.
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