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PROCESSES WITH INFINITELY MANY

JUMPING PARTICLES

WAYNE G. SULLIVAN

Abstract. We give sufficient conditions for a Markov process of an infinite

particle system to be specified by a formal generator which has a term for

each finite subset of particles. Under stronger assumptions we show that

processes of this type preserve a certain property of probability measures.

1. Introduction. In [1] Dobrushin initiated the study by probabilistic

techniques of a class of models originating in nonequilibrium statistical

mechanics. Within the model there are a countable infinity of particles

labelled by the set S, and each particle is described by a point in its phase

space W. When all the particles are fixed except the one labelled k, it

undergoes a continuous time Markov jump process with specified generator

Gk which depends on the configuration of all the particles. When the generator

Gk is given for each k G S, we have the existence problem of whether there is

a Feller semigroup whose infinitesimal generator corresponds in a reasonable

way to Szces Gk-
Another type of infinite particle process was proposed by Spitzer [5], the

existence problem being treated by Liggett [3]. In this model one has a

countable number of indistinguishable particles moving on a set of sites S,

each site being occupied by at most one particle. A configuration of the system

is expressed by a point x G {0,1} , where the site k is occupied if xk = 1, and

otherwise unoccupied. A particle at k in the configuration x can jump to any

of the unoccupied sites of x with infinitesimal transition probabilities depend-

ing on x and the pair of sites. An alternative way to view the model is to

ascribe two states {0, 1} to each point k G S and consider pairs of sites

coherently changing states rather than particles jumping between sites. The

model then takes the same form as that first described, except that one has a

generator term for each pair of points of S, rather than for each point of S1. A

similar model with even more jump terms was considered by Holley [2].

The processes covered by the existence theorems of Dobrushin, Liggett and

Holley exhibit two characteristic features. One is that, with probability 1, each

particle undergoes at most a finite number of jumps in a finite time interval.

The second is that the jumping behaviour of any one particle is controlled

predominantly by finitely many other particles, in a certain sense.

In this paper we formulate an existence theorem for a process which allows

coherent jumps for any finite subset of S, subject to conditions of the type

mentioned in the previous paragraph. The result is based on ideas in [7] which
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also allow us to prove that a property of processes of this type discovered by

Holley [2] extends with some additional assumptions to the case considered

here.

I wish to acknowledge valuable discussions with Professor J. T. Lewis.

2. Definitions and statement of existence theorem. The one-particle phase

space W is assumed to be compact and metrizable. The phase space of the

system of particles fi = Ws is compact and metrizable in the product

topology. C(fi) denotes the space of real valued continuous functions on fi

with the supremum norm ||-||. The term measure means bounded, countably

additive Borel measure, and ||-||m denotes the total variation norm for

measures. In the present context we employ measures parametrized by points

of fi, p.x, and use the norm

(2.i) Ik II = supIImJL

The symbol A, possibly subscripted, always denotes & finite subset of S. The

cardinality of A is denoted |A|. The limit lim A -> S is to be taken on the net

of finite subsets of S ordered by inclusion. For r C S we employ the left

subscript notation

(yx\ = yj  [fJ G r'
(2.2)

= xj dj g r,

for x G fi, y G WT.

For / G C(fi) we define the sequence 8f with values for each j G 5 as

follows:

(2.3) («/),= ^p \f(x)-f(y)\,
x,y£ti;x=y except at j

(2.4) US/Hi = .2 («/),••

Definition. A generator G on fi is a formal sum 2a ^a witn a term lor eacn

finite subset of S1 such that for each A and x G fi, GA(x, •) is a nonnegative

measure on WA which as a function of x is continuous in the topology of weak

convergence of measures. The operator of GA is the linear transformation of

C(fi) into itself given by

(2.5) (GAf)(x)=f [f(yx) - f(x)]GA(x,dy),

where the notation (2.2) is employed with T = A.

Given the generator G = 2 G\ on fi, we define C(j, A) by

(2.6) C(j,A) = sup \\GA(x, ■) - GA(y,-)\\m.
x,yE$l;x=y except at j

This gives an estimate of the influence of the ^-coordinate on GA. Subtler

estimates are employed in [7], but the above is sufficient for present consider-

ations.
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Theorem 1. Let G = 2 CA be a generator on £2 and K a real number such

that

(2.7) 2   l|CA|| < K,
v       ' A3k

(2 8) 2    2   CO",A) < TCy     ' jesA3k

for all k G 5 with C(j,A) given by (2.6). Then there is a strongly continuous,

positive, linear semigroup of contractions Tv t > 0, on C(9) so that for each

/ G C(Q)and each real t0 > 0,

(2.9) Jim    sup  |7;/-exp(/   2   CA-)/|| = 0.
v                                A^^0<z<z0M v   A'cA        >    M

Further, if \\8f\\x < oo, then for each j G S,

(2.10) (8T,f)j < (exp(rC)fi/),.

w/We C is z7ze matrix with elements

(2.11) Cy* =   2   CO, A).v ' A3*

The proof of Theorem 1 parallels, step by step, that of [7] and will be

omitted.

3. Approximate independence. If the generator G = 2 CA on fi has

nonvanishing terms only for single point sets {k} and G,kAx, ■) depends only

on xk, then the associated semigroup T, has the property that its adjoint T\ (see

[7]) maps product probability measures into product probability measures.

Holley [2] observed that this is true in an approximate sense for the

semigroups he considered. This section extends his result.

For T c 5 we use the notation C(£2|r) to denote those continuous

functions which depend only on T-coordinates. A subset F of £2 is said to be

T-measurable if it is measurable with respect to the smallest a-field for which

all functions of C(fi|T) are measurable.

Theorem 2. Let the generator G = 2 CA on A satisfy the hypothesis of

Theorem 1 and also satisfy

(3.1) 2 |A|C(*,A)< K,

(3 2) 2   |A|||GA|| < Ky      ' A3k

for each k G S. Then for eachf G C(fl) and each t0 > 0,

r33) lim sup sup   \\T,(fg) - (T,f)(Tlg)\\ = 0.
^••>T A^5£6C(n|A<);yi<l 0<z<z0

Before proving the above we give two immediate corollaries. A probability

measure p on 0 is said to be mixing if for each Borel set E and each e > 0
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there is a finite r C S so that

(3.4) H£ n F) - u(7s>(F)| < c

for each rc-measurable set F.

Corollary 1. If p. is a mixing probability measure on fi and Tt is the

semigroup of Theorem 2, then T't p. is mixing for each real t > 0.

When S = Zd, the points with integer coordinates in z7-dimensional Euclid-

ean space, and G is translation invariant, one frequently considers probability

measures which are ergodic in the sense of the Birkhoff theorem (see [2], [4],

[6]).

Corollary 2. Let S = Zd and let the G of Theorem 2 be translation

invariant. If p. is a translation invariant and Birkhoff ergodic probability measure

on fi, then so is T\ p. for each real t > 0.

Proof of Theorem 2. Select a fixed element x* G fi. For finite T G S

define the generator 77 on fi as follows:

77A(x, •) = GA(y, •)       if A C T with y = x on T, y = x* on Tc,

(3.5) = GA(z, •)       if A C Tc with z = x on Tc,      z = x* on T,

= 0 otherwise .

It follows that 77 satisfies the hypothesis of Theorem 1. Let Ut be the associated

semigroup. Note for/G C(fi|r)andg G C(fi|rc), Ut(fg) = (Utf)(Utg). For
/ G C(fi) the difference between 7^/and UJc&n be estimated as follows:

(3.6) TJ - UJ = /o' ̂ (Ut_s TJ)ds= /J U,_S(G - 77)TJds,

(3.7) W~ UJ\\ <    2   hjDJk(8f)k,
v       ' j,k 6 S

(3.8) DJk = [£ cxp(sC)ds].k,

(3.9) hj=   2   llt7A-77A|| K2K.
v       ' A3j

The matrix C of (3.8) is given by (2.11). We note that Djk of (3.8) is a

nondecreasing funct'on of /. We first obtain (3.7) under the assumption that

||z5/||i < oo. The result extends by taking limits to all/ G C(fi).

Because of (2.8) and (3.1) the D matrix satisfies

(3.10) 2 Djk <K*,       2 Djk < K* = [' esKds.
j k J{i

The z¥s can be estimated:

(311)        jer.hj <       2       I|gaII+2   2 c(k,A),
V ; A3/;Anr<-*0 t£r< A3y

(3 12) j£F: *, < 2 ||CA|| +22  C(k,A),
y ' A3);Anr^0 kST \3j
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(3 13) 2*/<      2      |A|||GA||+   2   2|A|C(*,A).v ; j£Tc AnIV0 keT  A

We proceed to prove (3.3). It is sufficient to do so when / depends on only

finitely many coordinates, i.e./ G C(fl|Ai). Given e > 0 and A! by (3.10) we

can find A2 D Ax so that

(3 14) 2     2   DJk < £.
yj'l*> ;e AS zee A,   J

From (3.11) and (2.7), (2.8) we can select A3 = T D A2, so that

(3.15) .2   hj < e.

From (3.13) and (3.1), (3.2) we can select A4 A A3 so that

(3.16) ,I^<£-

Finally, from (3.10) we can find A5 D A4 so that

(3 17)                                         2     2   Djk < e.
V-ll> y'6A4zVeA§

From these estimates we have for/ G C(£2|A,), g G C(fi|A;):

(3.18) \\T,(fg) - U,(fg)\\ < &II/H llglKTv"* + 2TC + 2TC + Tv*),

(3.19) ||(3?/)(%) - l/,(/*)|| < 2c||/|l 11*11(2** + 4TC).

The limit (3.3) follows.
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