A REFINEMENT FOR COEFFICIENT ESTIMATES OF UNIVALENT FUNCTIONS

DAVID HOROWITZ

> AbSTRACT. By examining the coefficient inequalities of FitzGerald it is shown that if $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ is analytic and univalent in the unit disc, then $\left|a_{n}\right|<(1.0691) n$.

Let
$S=\left\{f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}: f\right.$ is analytic and univalent in the unit disc $\}$.
The famous conjecture of Bieberbach asserts that if $f(z)=z+a_{2} z^{2}+\cdots$ is in S, then $\left|a_{n}\right| \leqslant n(n=2,3,4, \cdots)$.

In [1] FitzGerald proves that

$$
\begin{equation*}
\left|a_{n}\right|<\sqrt{7 / 6} n<(1.0802) n \quad(n=2,3,4, \cdots) \tag{1}
\end{equation*}
$$

and describes a method by which (1) can be improved. The purpose of this note is to carry out the first step in FitzGerald's program to obtain a refined coefficient bound for functions in the class S.

In [1] FitzGerald derives the following coefficient inequalities:
Theorem 1 (FitzGerald's first coefficient inequality). If $f(z)=z+$ $a_{2} z^{2}+a_{3} z^{3}+\cdots$ is in S, then
(2) $\left|a_{n}\right|^{4} \leqslant \sum_{k=1}^{n} k\left|a_{k}\right|^{2}+\sum_{k=n+1}^{2 n}(2 n-k)\left|a_{k}\right|^{2} \quad(n=2,3,4, \cdots)$.

Theorem 2 (FitzGerald's second coefficient inequality). If $f(z)$ $=z+a_{2} z^{2}+\cdots$ is in $S, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}$ are complex numbers, and $n_{1} \leqslant n_{2}$ $\leqslant \cdots \leqslant n_{L}$ are positive integers, then

$$
\begin{align*}
&\left.\left.\left|\sum_{j=1}^{L} \lambda_{j}\right| a_{n_{j}}\right|^{2}\right|^{2} \leqslant \sum_{j=1}^{L}\left|\lambda_{j}\right|^{2}\left\{\sum_{k=1}^{n_{j}} k\left|a_{k}\right|^{2}+\right. \\
&\left.+2 \operatorname{Re} \sum_{k=n_{j}+1}^{2 n_{j}}\left(2 n_{j}-k\right)\left|a_{k}\right|^{2}\right\} \tag{3}\\
& \sum_{1<j_{1}<j_{2}<L} \lambda_{j_{1}} \bar{\lambda}_{j_{2}}\left\{\sum_{k=n_{j_{2}-n_{j_{1}}}^{n_{j_{2}}}\left(n_{j_{1}}-n_{j_{2}}+k\right)\left|a_{k}\right|^{2}}\right. \\
&\left.+\sum_{k=n_{j_{2}+1}}^{n_{j 1}+n_{j_{2}}}\left(n_{j_{1}}+n_{j_{2}}-k\right)\left|a_{k}\right|^{2}\right\}
\end{align*}
$$

Received by the editors February 24, 1975.
AMS (MOS) subject classifications (1970). Primary 30A34.

FitzGerald derives the estimate (1) from (2). Note that (2) is a special case of (3), viz. $L=1$.

Let n be any positive integer, and in (3) set $L=2 n, n_{j}=j$ forl $\leqslant j \leqslant 2 n$, and

$$
\begin{equation*}
\lambda_{j}=n-|n-j| \quad \text { for } j=1,2, \ldots, 2 n . \tag{4}
\end{equation*}
$$

The left-hand side of (3) then has the form of the right-hand side of (2), and therefore it follows that

$$
\begin{align*}
\left|a_{n}\right|^{8} \leqslant & \sum_{j=1}^{2 n} \lambda_{j}^{2}\left\{\sum_{k=1}^{j} k\left|a_{k}\right|^{2}+\right. \\
& \left.+2 \sum_{k=j+1}^{2 j}(2 j-k)\left|a_{k}\right|^{2}\right\} \tag{5}\\
l=2 & \sum_{m=1}^{l-1} \lambda_{l} \lambda_{m}\left\{\sum_{k=l-m}^{l}(m-l+k)\left|a_{k}\right|^{2}\right. \\
& \left.\quad+\sum_{k=l+1}^{l+m}(m+i-k)\left|a_{k}\right|^{2}\right\}
\end{align*}
$$

Let

$$
\begin{equation*}
C=\sup _{n} \sup _{f \in S}\left\{\frac{\left|a_{n}\right|}{n}\right\} \tag{6}
\end{equation*}
$$

From (1) it follows that $C<\infty$. Given $\varepsilon>0$ there exists a positive integer n and a function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ in S such that

$$
\begin{equation*}
n(C-\varepsilon)<\left|a_{n}\right| . \tag{7}
\end{equation*}
$$

From (4), (5), (6), and (7) it follows that
$n^{8}(C-\varepsilon)^{8} \leqslant C^{2}\left[\sum_{j=1}^{2 n} \lambda_{j}^{2}\left\{\sum_{k=1}^{j} k^{3}+\sum_{k=j+1}^{2 j}(2 j-k) k^{2}\right\}\right.$

$$
\begin{align*}
+2 \sum_{l=2}^{2 n} \sum_{m=1}^{l-1} \lambda_{l} \lambda_{m}\left\{\sum_{k=l-m}^{l}(m\right. & -l+k) k^{2} \tag{8}\\
& \left.\left.+\sum_{k=l+1}^{l+m}(m+l-k) k^{2}\right\}\right]
\end{align*}
$$

Using the standard formulas for $\sum_{k=1}^{N} k^{l}$ for $l=1,2,3, \ldots, 7$ one finds after a lengthy calculation that the right-hand side of (8) is equal to

$$
C^{2}\left[\frac{1}{1260}\left(1881 n^{8}-602 n^{6}+49 n^{4}-68 n^{2}\right)\right]<C^{2} \frac{1881}{1260} n^{8}
$$

Since $\varepsilon>0$ was chosen arbitrarily, this implies

$$
C^{6} \leqslant 209 / 140 \text { whence } C \leqslant(209 / 140)^{1 / 6}<1.0691
$$

This proves
Theorem 3. If $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ is in S, then

$$
\begin{equation*}
\left|a_{n}\right| \leqslant(209 / 140)^{1 / 6} n<(1.0691) n \quad(n=2,3,4, \cdots) .[\tag{9}
\end{equation*}
$$

Remark. FitzGerald suggests further slight refinements by substituting the right-hand side of (5) into the left-hand side of (3) and continuing this procedure of using (3) to bound the right-hand side of each successive inequality. However, any estimate that can be obtained on the right-hand side of (5) in this manner cannot be better than that which follows by replacing $\left|a_{k}\right|$ by k in this expression, since the Koebe function

$$
f(z)=\frac{z}{(1-z)^{2}}=\sum_{k=1}^{\infty} k z^{k}
$$

is in S. By doing so the inequality

$$
n^{8}(C-\varepsilon)^{8} \leqslant(209 / 140) n^{8}
$$

is derived, from which it follows that the improved bounds described above can be no better than

$$
C \leqslant(209 / 140)^{1 / 8} \cong 1.0514 .
$$

Thus, although the Bieberbach conjecture might still follow from inequality (3), it cannot be proven by successive applications of the above method.

Reference

1. C. H. FitzGerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46(1972), 356-368.

Department of Mathematics, University of South Florida, Tampa, Florida 33620

Current address: 423 North Palm Drive, \#307 Beverly Hills, California 90210

