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A REFINEMENT FOR COEFFICIENT ESTIMATES OF

UNIVALENT FUNCTIONS

DAVID HOROWITZ

Abstract. By examining the coefficient inequalities of FitzGerald it is

shown that if f(z) = z + a2z2 + a^z3 + . . . is analytic and univalent in the

unit disc, then \a„\ < (1.0691)zi.

Let

S = | /(z) = z + 2 anz":fis analytic and univalent in the unit disc >.

The famous conjecture of Bieberbach asserts that if/(z) = z + a2z2 + • • •

is in S, then \an\ < n in = 2, 3, 4,  • • • ).

In [1] FitzGerald proves that

(1) \a„\<VT/6 n <(1.0802)«        (« = 2, 3, 4, • • • )

and describes a method by which (1) can be improved. The purpose of this

note is to carry out the first step in FitzGerald's program to obtain a refined

coefficient bound for functions in the class S.

In [1] FitzGerald derives the following coefficient inequalities:

Theorem 1 (FitzGerald's first coefficient inequality). If /(z) = z +

a2z2 + <23z3 + • ■ •   is in S, then

(2) Kf< £ k\ak\2+    2    (2« " k)\M2       (" = 2, 3, 4, • • • )• D
zc=l k = n+\

Theorem 2 (FitzGerald's second coefficient inequality). If /(z)

= z + a2z2 + ■ ■ ■ is in S, A,, A2, . . . , \L are complex numbers, and «, < n2

< • • •  < nL are positive integers, then

2 MM2 < £ IM2 £ *N2 +   2   (2», - *)N2
j=\ y-l lz<=l k-nj+\

(3) +2Re       2       a_A       £      K-"z2+^)N2
i<7i<y'2<i        [*~'!z2-'!/i

"y,+ "a 1

+   2   K + ̂ -*)l«*|2-n
*-»fe+' J
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FitzGerald derives the estimate (1) from (2). Note that (2) is a special case

of (3), viz. 7=1.

Let n be any positive integer, and in (3) set L = In, nj = j fori < / < 2«,

and

(4) Xj = n - \n - j\    for/ = 1, 2,. . ., 2n.

The left-hand side of (3) then has the form of the right-hand side of (2), and

therefore it follows that

In I     J 2/ \

Kf<2A,2     2*N2+    2    (2j-k)\ak\2\
y-1        \k=\ k=j+\ j

(5) +22   2 A;Am j     2    (m - / + *)K|2
/ = 2 m=l { k = l-m

1 + m \

+    2    (m + l-k)\ak\2  .

Let

(6) C = sup sup | - |.
"    fes[    n    I

From (1) it follows that C < oo. Given e > 0 there exists a positive integer n

and a function /(z) = z + a2z2 + a3z3 + • • •   in S such that

(7) n(C-e)<\a„\.

From (4), (5), (6), and (7) it follows that

n\C-e)s< C2\ 2A/f 2 k3 +    2    (2j - k)k2\
.7=1 U-l k=j+\ ]

(8) +22 2\k\   2   («7-/ + /c)/t2
/ = 2 m = l [ k = l-m

l+m \ '

+    2    (w + / - A:)A:2     .
k=l+\ J

Using the standard formulas for 2^=,/c' for / = 1, 2, 3, . . . , 7 one finds after

a lengthy calculation that the right-hand side of (8) is equal to

C2[-1-(1881«8-602«6 + 49«4-68«2)l < C2 4Hi «8-1260 ' J 1260

Since e > 0 was chosen arbitrarily, this implies

C6 < 209/140   whence    C < (209/140)1/6< 1.0691.

This proves

Theorem 3. Iff(z) = z + a2z2 + a3z3 + • • •   is in S, then

(9) \an\ < (209/140)I/6n < (1.0691)n        (n = 2, 3, 4, • • • ).Q
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Remark. FitzGerald suggests further slight refinements by substituting the

right-hand side of (5) into the left-hand side of (3) and continuing this

procedure of using (3) to bound the right-hand side of each successive

inequality. However, any estimate that can be obtained on the right-hand side

of (5) in this manner cannot be better than that which follows by replacing

\ak\ by k in this expression, since the Koebe function

00

m = —J—2 = 2 kzk
(l-z)2       *_,

is in S. By doing so the inequality

n\C - e)8<(209/140)«8

is derived, from which it follows that the improved bounds described above

can be no better than

C <(209/140)'/8s 1.0514.

Thus, although the Bieberbach conjecture might still follow from inequality

(3), it cannot be proven by successive applications of the above method.
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