DIAGONALIZABLE NORMAL OPERATORS

J. P. WILLIAMS¹

ABSTRACT. If the image $\varphi(A)$ of a normal operator A on a separable Hilbert space \Re is a diagonal operator for some nonzero representation φ of $B(\Re)$ (that annihilates the compact operators), then A must itself be a diagonal operator on \Re (with countable spectrum). This yields an "algebraic" characterization of the closure of the range of a derivation induced by a diagonal operator.

1. Introduction. If A is a bounded normal operator on a separable Hilbert space \Re can one find a faithful C^* -representation φ of the full algebra $\Re(\Re)$ of all bounded linear operators on \Re such that the eigenvectors of $\varphi(A)$ span the representation space \Re_{φ} , that is, such that $\varphi(A)$ is a diagonal operator on \Re_{φ} ? The question was raised by B. E. Johnson in connection with some work on derivations [4]. Our purpose here is to supply the answer: only if A is already a diagonal operator on \Re . We show also that $\varphi(A)$ is a diagonal operator for a nonzero representation φ of $\Re(\Re)$ that annihilates the compact operators if and only if A is a diagonal operator with countable spectrum.

The nondiagonalizability result as just stated hardly seems surprising. But it is interesting to note that the proof seems to require a deep result only recently discovered. Moreover, Johnson's question is reasonable because an affirmative answer would provide a satisfying result about derivations, or better, because Berberian [1] has shown that one *can* find a faithful representation φ of $\mathfrak{B}(\mathfrak{K})$ such that each point of the spectrum of $\varphi(A)$ is an eigenvalue.

2. **Diagonalizability.** For $A \in \mathfrak{B}(\mathfrak{K})$ we shall denote by δ_A the inner derivation $X \to AX - XA$ on $\mathfrak{B}(\mathfrak{K})$ and by \mathfrak{K} the ideal of compact operators on \mathfrak{K} .

Theorem 1. Let A be a normal operator on a separable Hilbert space \mathfrak{K} . The following conditions are equivalent:

- (1) There exists a nonzero representation φ of $\mathfrak{B}(\mathfrak{K})$ on a Hilbert space \mathfrak{K}_{φ} (not necessarily faithful) such that $\varphi(A)$ is a diagonal operator on \mathfrak{K}_{ϖ} .
 - (2) A is a diagonal operator on \mathfrak{R} .
- (3) Each positive operator in the norm closure $\Re(\delta_A)^-$ of the range of δ_A is compact.
 - (4) Each projection in $\Re(\delta_A)^-$ has finite rank.

PROOF. The implications $(2) \Rightarrow (1)$ and $(3) \Rightarrow (4)$ are trivial. Suppose (1)

Received by the editors November 13, 1974.

AMS (MOS) subject classifications (1970). Primary 46L05, 47B15, 47A50, 47B47.

Key words and phrases. Representations of C^* -algebras, normal operators, range of a derivation. ¹ Research supported by NSF GP 28601.

holds so that $\varphi(A)e_i = \lambda_i e_i$ for some orthonormal basis $\{e_i\}$ of \mathcal{K}_{φ} , and let $Z = \lim \delta_A(X_n)$ be a positive operator in $\Re(\delta_A)^-$. Then

$$(\varphi(Z)e_i, e_i) = \lim[(\varphi(A)\varphi(X_n)e_i, e_i) - (\varphi(X_n)\varphi(A)e_i, e_i)]$$

=
$$\lim[\lambda_i(\varphi(X_n)e_i, e_i) - \lambda_i(\varphi(X_n)e_i, e_i)] = 0.$$

Hence $\sqrt{\varphi(Z)}e_i = 0$ for each i so that $\varphi(Z) = 0$. Thus $Z \in \ker(\varphi) \subset \mathcal{K}$ because \mathcal{K} is separable. Thus $(1) \Rightarrow (3)$.

We complete the proof by showing $(4) \Rightarrow (2)$, or what is the same, that if A is not a diagonal operator then $\Re(\delta_A)^-$ contains an infinite rank projection. By replacing A with its restriction to the orthocomplement of the span of its eigenvectors, there is no loss of generality in assuming that A itself has no eigenvectors.

Let B be the direct sum of countably many copies of A acting in the usual way on the space $\widetilde{\mathbb{X}} = \mathbb{X} \oplus \mathbb{X} \oplus \mathbb{X} \oplus \cdots$. Then by a theorem of I. D. Berg [2] there is a unitary transformation U mapping \mathbb{X} onto $\widetilde{\mathbb{X}}$ and a compact operator K on \mathbb{X} such that $U^{-1}BU = A + K$.

Now A and B have no eigenvalues and consequently $\Re(\delta_A)^-$ and $\Re(\delta_B)^-$ respectively contain all the compact operators on \Re and $\bar{\Re}$ respectively [6]. Hence $\Re(\delta_A)^- = U^{-1}\Re(\delta_B)^-U$. Also, for the same reason, if P_0 is any nonzero projection of finite rank, we can choose a sequence $X_n \in \Re(\Re)$ such that $\|\delta_A(X_n) - P_0\| \le n^{-1}$. Let \tilde{X}_n be the direct sum of countably many copies of X_n and let \tilde{P} be the direct sum of as many copies of P_0 . Then $\|\delta_B(\tilde{X}_n) - \tilde{P}\| \le n^{-1}$ so that $\tilde{P} \in \Re(\delta_B)^-$, and consequently, $P = U^{-1}\tilde{P}U$ is a projection of infinite rank in $\Re(\delta_A)^-$.

3. Essential diagonalizability. A diagonal operator A on a separable space \Re has only countably many eigenvalues of course, but the spectrum itself can be any prescribed compact subset of the plane. However, if A is also diagonalizable by a representation of the Calkin algebra, there is a severe restriction on the spectrum. The first assertion of the next theorem was pointed out to me by C. Foiaş.

THEOREM 2. Let A be a normal operator on a separable Hilbert space \Re .

- (1) If $\varphi(A)$ is a diagonal operator for some nonzero representation φ of $\mathfrak{B}(\mathfrak{K})$ with $\varphi(\mathfrak{K}) = 0$, then the spectrum of A is countable.
- (2) Conversely, if A has countable spectrum, then $\varphi(A)$ is a diagonal operator for any nonzero representation φ of $\mathfrak{B}(\mathfrak{H})$.

PROOF. (1) Suppose that the spectrum $\sigma(A)$ of A is not countable. Then there is a continuous measure μ with support contained in $\sigma(A)$ [5, p. 176]. (For example, take $\mu = \nu \circ f^{-1}$ where ν is Haar measure on the compact abelian group $G = \{0,1\}^N$ and f is a homeomorphism from G into $\sigma(A)$.) Let B_0 be the operator defined by multiplication by the independent variable in $L^2(\mu)$. Then A and $B = B_0 \oplus A$ have the same essential spectrum, so that by Berg's theorem [2] there is a unitary operator U from $L^2(\mu) \oplus \mathcal{K}$ onto \mathcal{K} and a compact operator K with $UBU^{-1} = A + K$. But then $\varphi(UBU^{-1}) = \varphi(A + K) = \varphi(A)$ is diagonal so that (Theorem 1) UBU^{-1} , and therefore B itself, is diagonal. This is a contradiction since B_0 has no eigenvalues.

- (2) Suppose that A is a diagonal operator on $\mathfrak R$ with countable spectrum and let φ be a nonzero representation of $\mathfrak B(\mathfrak K)$ on a Hilbert space $\mathfrak K_{\varphi}$. Let $\mathfrak R = \varphi(1)\mathfrak K_{\varphi}$. If $X \in \mathfrak B(\mathfrak K)$ then $\varphi(X) = \varphi_0(X) \oplus 0$ on $\mathfrak K_{\varphi} = \mathfrak R \oplus \mathfrak R^{\perp}$ so that φ_0 is a representation of $\mathfrak B(\mathfrak K)$ on $\mathfrak R$ and $\varphi_0(1)$ is the identity operator on $\mathfrak R$. In particular, the operator $\varphi_0(A)$ has spectrum contained in $\sigma(A)$ and is therefore countable. It suffices to show, therefore, that a normal operator B on a Hilbert space $\mathfrak R$ having countable spectrum is diagonal. This fact is well known: if $\mathfrak R_0$ is the span of the eigenvectors of B then $\mathfrak R_1 = \mathfrak R \oplus \mathfrak R_0$ reduces to 0; otherwise $\sigma(B|\mathfrak R_1)$, being countable, must have an isolated point and this is necessarily an eigenvalue of B.
- REMARK 1. L. G. Brown has observed that Theorem 2 is valid as stated with the weaker hypothesis that the operator A is essentially normal, i.e., that $\pi(A) = A + \Re$ is a normal element of the quotient $\Re(\Re)/\Re$: if $\sigma(A)$ is uncountable choose a normal operator B_0 with no eigenvalues such that $\sigma(B_0) \subset \sigma(A)$ and let $B = A \oplus B_0 \oplus B_0 \oplus \cdots$. Then $\Re(\delta_B)$ contains a projection of infinite rank so that $\varphi(B)$ is not a diagonal operator for any nonzero representation φ of $\Re(\Re)$. Hence if $\varphi(\Re) = 0$ then $\varphi(A)$ is also not a diagonal operator because $\pi(A)$ and $\pi(B)$ are unitarily equivalent [3].
- 2. After this paper was completed the author discovered a preprint of John G. Aiken, An application of direct integral theory to a question of Calkin, [Notices Amer. Math. Soc. 21 (1974), A493]. Aiken constructs a diagonal operator A such that $T_u(A)$ is not a diagonal operator for any of the "generalized limit" representations T_u of $\mathfrak{B}(\mathfrak{K})/\mathfrak{K}$ introduced by J. W. Calkin, thereby answering a question explicitly(!) raised in the latter's famous paper [Ann. of Math. (2) 42 (1941), 839-873. MR 3, 208].

REFERENCES

- 1. S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111—114. MR 24 #A3516.
- 2. I. D. Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365—371. MR 44#840.
- 3. L. G. Brown, R. G. Douglas and P. A. Fillmore, *Unitary equivalence modulo the compact operators and extensions of C*-algebras*, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973.
- 4. B. E. Johnson and J. P. Williams, The range of a normal derivation, Pacific J. Math. 56 (1975).
 - 5. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35#1420.
- 6. J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279. MR 46#7923.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401