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DIAGONALIZABLE NORMAL OPERATORS

J. P. WILLIAMS!

ABSTRACT. If the image @(4) of a normal operator 4 on a separable Hilbert
space X is a diagonal operator for some nonzero representation ¢ of B(3()
(that annihilates the compact operators), then A must itself be a diagonal
operator on J (with countable spectrum). This yields an “algebraic” charac-
terization of the closure of the range of a derivation induced by a diagonal
operator.

1. Introduction. If A is a bounded normal operator on a separable Hilbert
space K can one find a faithful C*-representation ¢ of the full algebra ®(3C)
of all bounded linear operators on ( such that the eigenvectors of ¢(A4) span
the representation space 3Cp, that is, such that ¢(A) is a diagonal operator on
J,? The question was raised by B. E. Johnson in connection with some work
on derivations [4]. Our purpose here is to supply the answer: only if A4 is
already a diagonal operator on 3. We show also that ¢(4) is a diagonal
operator for a nonzero representation ¢ of %B(3C) that annihilates the compact
operators if and only if A4 is a diagonal operator with countable spectrum.

The nondiagonalizability result as just stated hardly seems surprising. But it
is interesting to note that the proof seems to require a deep result only recently
discovered. Moreover, Johnson’s question is reasonable because an affirmative
answer would provide a satisfying result about derivations, or better, because
Berberian [1] has shown that one can find a faithful representation ¢ of B(%()
such that each point of the spectrum of @(4) is an eigenvalue.

2. Diagonalizability. For 4 € ®B(3() we shall denote by §, the inner
derivation X — 4AX — XA on %(3) and by ¥ the ideal of compact operators
on (.

THEOREM 1. Let A be a normal operator on a separable Hilbert space 3. The
following conditions are equivalent:

(1) There exists a nonzero representation ¢ of ®(3() on a Hilbert space 3, (not
necessarily faithful) such that ¢(A) is a diagonal operator on (.

(2) A is a diagonal operator on K.

(3) Each positive operator in the norm closure R(8,)  of the range of 8, is
compact.

(4) Each projection in R(8,)" has finite rank.

ProOF. The implications (2) = (1) and (3) = (4) are trivial. Suppose (1)
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holds so that g(4)e; = \;¢; for some orthonormal basis {e;} of I(,, and let
= lim 8,4(X,) be a posmve operator in /(8 ,)". Then

(P(Z)e;,e;) = lim[(@p(4)p(X,)e;, e;) — (@(X; )p(Ae;, )]
= lim[A;(¢(X,)e;, €;) — Ni(@(X,)e;, ¢;)] = 0.

Hence \/¢p(Z)e; = 0 for each i so that ¢(Z) = 0. Thus Z € ker(p) C X
because I is separable. Thus (1) = (3).

We complete the proof by showing (4) = (2), or what is the same, that if 4
is not a diagonal operator then }(§,)" contains an infinite rank projection. By
replacing A with its restriction to the orthocomplement of the span of its
eigenvectors, there is no loss of generality in assuming that A4 itself has no
eigenvectors.

Let B be the direct sum of countably many copies of 4 acting in the usual
way on the space = H® H ® @ ---. Then by a theorem of I. D. Berg
[2] there is a unitary transformation U mapping I onto % and a compact
operator K on ¥ such that U"'BU = 4 + K.

Now 4 and B have no eigenvalues and consequently R(8,) and R(85)"
respectively contain all the compact operators on I and % respectively [6].
Hence R(8,)” = U™'®(85)” U. Also, for the same reason, if P, is any
nonzero projection of finite rank, we can choose a sequence X, € B(J() such
that [|8,(X,) — Poll < n~'. Let X, be the direct sum of countably many copies
of X, and let P be the direct sum of as many copies of Py. Then ||§5(X,) — P||
< nlsothat P e R(85) ", and consequently, P = U~ PU is a projection of
infinite rank in }(8,)".

3. Essential diagonalizability. A diagonal operator A on a separable space
JChas only countably many eigenvalues of course, but the spectrum itself can
be any prescribed compact subset of the plane. However, if 4 is also
diagonalizable by a representation of the Calkin algebra, there is a severe
restriction on the spectrum. The first assertion of the next theorem was pointed
out to me by C. Foias.

THEOREM 2. Let A be a normal operator on a separable Hilbert space .

(1) If o(A) is a diagonal operator for some nonzero representation ¢ of B(I)
with () = 0, then the spectrum of A is countable.

(2) Conversely, if A has countable spectrum, then ©(A) is a diagonal operator
for any nonzero representation @ of B(3).

PrOOF. (1) Suppose that the spectrum a(4) of 4 is not countable. Then
there is a continuous measure u with support contained in o(4) [5, p. 176]. (For
example, take g = » o f ! where » is Haar measure on the compact abelian
group G = {0, N and fis a homeomorphism from G into o(4).) Let B, be the
operator defined by multiplication by the independent variable in I2(x). Then
A and B = By ® A have the same essential spectrum, so that by Berg’s
theorem [2] there is a unitary operator U from I*(u) & % onto % and a
compact operator K with UBU™! = 4 + K. But then (UBU™Y) =
@(4 + K) = ¢(A) is diagonal so that (Theorem 1) UBU !, and therefore B
itself, is diagonal. This is a contradiction since B, has no eigenvalues.
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(2) Suppose that A4 is a diagonal operator on ¥ with countable spectrum and
let ¢ be a nonzero representation of B(J3) on a Hilbert space e Let
M = @(1)I,. If X € B(I) then (X ) = go(X) ® 0 on I, = M & M so
that g is a representation of %B(3) on M and gy(1) is the identity operator on
ON. In particular, the operator @y(A4) has spectrum contained in o(4) and is
therefore countable. It suffices to show, therefore, that a normal operator B on
a Hilbert space 9 having countable spectrum is diagonal. This fact is well
known: if 9N, is the span of the eigenvectors of B then 9N, = IM © 9N,
reduces to 0; otherwise o(B|9N, ), being countable, must have an isolated point
and this is necessarily an eigenvalue of B.

REMARK 1. L. G. Brown has observed that Theorem 2 is valid as stated with
the weaker hypothesis that the operator 4 is essentially normal, i.e., that
m(4) = A + ¥ is a normal element of the quotient B(IC)/K: if o(4) is
uncountable choose a normal operator B, with no eigenvalues such that
o(By) C o(4) and let B=A ® By® By ® ---. Then ®(85)  contains a
projection of infinite rank so that g(B) is not a diagonal operator for any
nonzero representation ¢ of B(3C). Hence if (%) = 0 then ¢(4) is also not a
diagonal operator because m(4) and #(B) are unitarily equivalent [3].

2. After this paper was completed the author discovered a preprint of John
G. Aiken, An application of direct integral theory to a question of Calkin,
[Notices Amer. Math. Soc. 21 (1974), A493]. Aiken constructs a diagonal
operator A such that 7,(4) is not a diagonal operator for any of the
“generalized limit” representations T, of ®(3C)/¥ introduced by J. W. Calkin,
thereby answering a question explicitly(!) raised in the latter’s famous paper
[Ann. of Math. (2) 42 (1941), 839-873. MR 3, 208].
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