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Abstract. S. P. Franklin introduced the notion of a sequential space and

characterized such spaces as being precisely the quotient images of metric

spaces.

In this paper we investigate a necessary and sufficient condition for the

product of a first countable space with a sequential space to be sequential,

and we consider the property "sequential space" in X".

1. Introduction. Throughout this paper, by a space we shall mean a regular,

^-space.

The symbol N will refer to the set of natural numbers.

Let us recall that a space X is sequential [2], if a subset F of X is closed

whenever F fl C is closed in C for every convergent sequence C together with

its limit point.

Metric spaces, or more generally Freehet (= Freehet-Urysohn) spaces are

sequential. Sequential spaces are ^-spaces.

As is well known [2], the product of a sequential space with a separable

metric space need not be sequential.

As for the product of a sequential space with a first countable space, our

main theorem, which will be established in §3, reads as follows:

Theorem 1.1. Let X be a Freehet space, or a sequential space each of whose

points is a Gs-set ior equivalently, a k-space each of whose points is a Gs-set). Let

Y be first countable. Then X X Y is sequential if and only if X is strongly Freehet,

or Y is locally countably compact.

In the necessity, the property "each point of X is a G5-set" is essential.

According to Siwiec [12], a space X is called strongly Freehet (= countably

bisequentialin the sense of E. Michael [6]) if, whenever [F„;n G N} (or simply

{F„}) is a decreasing sequence accumulating at x in X, there exist xn G Fn such

that the sequence {xn;n G N] (or simply {xn}) converges to x.

Metric spaces are strongly Freehet. Strongly Freehet spaces are Freehet.

As a special class of sequential spaces, we shall consider symmetrizable

spaces.

According to A. V. Arhangel'skii [1], a space X is symmetrizable, if there is

a  real  valued,  nonnegative  function  d defined  on IXA" satisfying  the
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following: (1) d(x,y) = 0 iff (= if and only if) x = y, (2) d(x,y) = d(y,x),
and (3) A C X is closed iff d(x,A) > 0 for any x G X — A.

If we replace (3) by (3)': x G A iff d(x,A) = 0, then such a space X is

called semimetrizable [4].

Metric spaces, or more generally semimetrizable spaces, are symmetrizable.

It has been shown [14] that the product of a countable, symmetrizable space

with a separable metric space need not be symmetrizable.

In the following theorem, we establish a necessary and sufficient condition

for the product of a symmetrizable space with a semimetrizable space to be

symmetrizable.

Theorem 1.2. Let a symmetrizable space X be paracompact, or more

generally meta-Lindelof (i.e. every open covering has a point-countable open

refinement), or have each point a Gg-set. Let Y be semimetrizable. Then X X Y is

symmetrizable if and only if X is semimetrizable, or Y is locally compact.

As for the property "sequential space" in the product A"" of countably many

copies of X, in §4, we will have

Theorem 1.3.    Let X have one of the three properties listed below:

(i) i^Q-space in the sense of E. Michael [5],

(ii) closed image of a metric space,

(iii)  CW-complex in the sense of Whitehead.

If Xa is sequential, then X is metrizable.

It follows from [14] that there is a sequential space (in fact, a symmetrizable

space) X such that A2 is not sequential.

In this respect, it will be shown that the higher power Xu can also behave

unpredictably.

That is, there is a space X such that X" is sequential (in fact, symmetrizable)

for all n G N, but Xa is not even sequential.

2. Preliminaries. As a weaker condition than "X is strongly Frechet", we

shall often make use of the following condition (C) on X.

(C) Let {7^} be a decreasing sequence accumulating at x G X. Then there

exist xn G Fn such that the sequence {xn} converges to some point x' G X.

Lemma 2.1. (A) Let X be a Frechet space, or a space each of whose points is

a Gg-set. If X satisfies condition (C), then X is strongly Frechet.

(B) Let X be a symmetrizable space satisfying condition (C). If X is also meta-

Lindelof, or each point of X is a Gg-set. Then X is semimetrizable.

Proof. (A) In case X is Frechet, in view of the proof of [11, Theorem 5.1],

X is strongly Frechet.
In case each point of X is a Gg-set, it may be proved directly that X is

strongly Frechet.

(B) We shall prove that X is Frechet. Because of part (A), we need only

consider the case where X is meta-Lindelof. Let D be a countable subset of X.

Then the meta-Lindelof space D is separable, hence is Lindelof. Since D is

symmetrizable, by [10, Theorem 2] D is hereditarily Lindelof, and hence each

point of D is a G5-set in D. Since D satisfies condition (C), by part (A), D is

strongly Frechet. Then D is Frechet. Thus each countable subset of X is
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Freehet. Hence X is Freehet by [6, Proposition 8.7]. Thus X is first countable,

for Freehet, symmetrizable spaces are first countable [1]. Since first countable,

symmetrizable spaces are semimetrizable, X is semimetrizable.

Lemma 2.2. Let X be sequential. IfX does not satisfy condition (C), then there

is a countable, metric space Y0 such that X X Y0 is not sequential.

Proof. Since X does not satisfy condition (C), there is a point x0 of X, and

a decreasing sequence [An) accumulating at x0 satisfying

(K) If xn G A„, then the sequence {xn) has no limits. Since X is sequential

and x0 G An for n G N, by [6, Lemma 8.3 and Proposition 8.5], there is a

sequence {C„) of countable subsets of X such that C„ C An and x0 G C„.

Let Y0 = U„X=X{C„ X {n}} U {x0}, and topologize Y0 as follows:

Let each point of U£LiCn X {n} be open, and {Vn(x0)} be a countable local

base at x0, where V^(x0) = U/>„{C(- X {/}} U {x0}. Then Y0 is a metric space,

which is not locally compact. Let A = {(x, (x, n)) G X X Y0;n G N,x G C„).

Then (x0,x0) G A -A. Thus A is not closed in X X Y0.

Suppose that X X Y0 is sequential. Then a subset F of X X Y0 is closed

whenever Ffl (C X TC) is closed in C X K for every convergent sequence C in

X and every convergent sequence K in Y0. Let C, TC be convergent sequences

in X, Y0 respectively, and let B = A D (C X K). To see that Ti is a closed

subset of C X K, let z G C X K — B. We need only consider the case

z = (x,x0). The condition (K.) implies that there is Aj which contains no

elements of C. Then there is a neighborhood X X F/ (x0) of z which is disjoint

from the set B. Thus Ti is closed in C X K. Hence A is closed in X X Y0, which

is a contradiction. Therefore A' X Iq is not sequential.

Lemma 2.3. Let X be first countable. If X is not locally countably compact,

then the space Y0 in Lemma 2.2 is a closed subset of X.

Proof. By the hypotheses for X, there is a point xQ of X, and a countable

local base {£/„} at x0 such that each Un is not countably compact.

By induction, we can obtain a sequence [C„k) of countably infinite, discrete

subsets of X such that C„k C U„k, C„ n C„* = 0 if j ¥= k, and C„t 5 x0,
where 1 = «, < n2 < ■ ■ •.

Let Z = UJt°=1Cn/, U {x0}. Then Z is a closed subset of X and is homeo-
morphic to the space Y0.

K. Morita [9, Theorem 9.2] has shown that if X X Y is a Freehet space (or

equivalently, a hereditarily sequential space [3]), then X is strongly Freehet, or

Y is discrete.

As for sequential spaces, from Lemmas 2.2 and 2.3, we have

Proposition 2.4. Let X be sequential, and Y first countable. If X X Y is

sequential, then X satisfies condition (C), or Y is locally countably compact.

3. Proofs of Theorems 1.1 and 1.2, and some examples.

Proof of Theorem 1.1. The necessity follows from Lemma 2.1(A) and

Proposition 2.4.

The sufficiency follows from [6, Proposition 4.D.4] and [13, Corollary 2.4].

Proof of Theorem 1.2. The sufficiency follows from [14, Corollary 4.4]. So

we shall prove the necessity.
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For this purpose, let X X Y be symmetrizable. Then X X Y is sequential, for

symmetrizable spaces are sequential [1].

Suppose Y is not locally compact. Then Y is not locally countably compact,

for countably compact, semimetrizable spaces are compact [10, Corollary 2].

Thus X satisfies condition (C) by Proposition 2.4. That X is semimetrizable

follows from Lemma 2.1(B).

Now, by the following Remark 3.1, we see that in the necessity of the

condition of Theorem 1.1, the assumptions "each point of X is a G§-set" and

"Y is first countable" are essential.

The symbols 7?, Q, and Z will denote, respectively, the reals, the rationals,

and the integers, all with their usual topologies.

Remark. 3.1. (A) Let A" be a compact, sequential space which is not

Frechet. In fact, such a space exists by [3, Example 7.1]. Then X X Q is

sequential by [13, Corollary 2.4]. But X is not strongly Frechet, nor is Q locally

countably compact.

(B). Let X be the quotient space R/Z with Z identified to a point. Then X

is a countable CW-complex. Let Y be the countable, symmetrizable space in

[14, Example 3.2]. Then a subset F of Y is closed whenever F fl C, is closed

for every convergent sequence C, (i = 0,1,2,...) in Y, where C0 = {0}

U [\/n;n G N], C, = {\/i + \/n;n G TV). Thus, in view of the proof of [7,

Lemma 2.1], XX Y is sequential. But the Frechet space X is not strongly

Frechet, nor is Y locally countably compact.

4. The property "sequential space" in X".

Proposition 4.1.    Let X" be sequential. Then X satisfies condition (C).

Proof. In case X is countably compact, it is easy to check that a sequential

space X satisfies condition (C).

In case X is not countably compact, the space N may be regarded as a

closed subset of X. Since IxJV" is a closed subset of Xa, X X N" is

sequential. Hence X satisfies condition (C) by Proposition 2.4.

By Lemma 2.1(A) and Proposition 4.1, we have

Proposition 4.2. Let X be Frechet, or each point of X be a Gg-set. If X" is

sequential, then X is strongly Frechet.

Lemma 4.3. Let X have one of the properties (i), (ii) and (iii) in Theorem 1.3.

If X is strongly Frechet, then X is metrizable.

Proof. From [6, Theorem 9.11 and Corollary 9.10], we need only prove

case (iii).
Let SD = {ea;a G A} be the collection of cells in X. We shall prove the

collection ® = {ea; a G A} is point-finite.

Suppose that there is a point x0 G X such that infinitely many elements of

3) contain the point x0. So we may assume each ean (n G N) contains the

point x0. Let Fn = U~=1ea/i - U"=1ea, Then x0 G F„ for n G N. Since X is

strongly Frechet, there exist xn £ Fn such that a sequence {x„} converges to

some point x' G X. Let us put K = {xn;n G N) U {*'}. Then K meets

infinitely many elements of ®. While, TC is a compact subset of a CW-complex
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X. Thus K meets only a finite number of elements of ®. This is a contradiction.

Hence the collection 2) is point-finite.

By a similar method, we can see that for each point x of X, assuming only

these ea. (i = 1,2,... /) contain the point x, there is a neighborhood U of x

such that U C ea U • • ■ U ea. Since ea U ■ • • U e is metric, U is metric.

Hence X is locally metrizable. Since a CW-complex is paracompact [9], X is

metrizable.

Proof of Theorem 1.3. From the hypothesis for X, each point of A" is a Gs-

set. Thus, by Lemma 2.1(A), Proposition 4.1 and Lemma 4.3, A1 is a metric

space.

From the following example, we see that the product Xa of a sequential

(symmetrizable) space X need not be sequential (symmetrizable) even if, for

all n G N, X" is sequential (symmetrizable).

Example 4.4.Let X be the symmetrizable space Y in Remark 3.1(B). Then,

in view of the proof of [7, Lemma 2.1], for all n G N, X" is sequential and

hence is symmetrizable by [14, Theorem 4.2], while X is an N0-space but is not

metrizable. Then, by Theorem 1.3, Xa is not even sequential and hence is not

symmetrizable.
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