AN ALMOST CONTINUOUS FUNCTION $f: S^n \to S^m$ WHICH COMMUTES WITH THE ANTIPODAL MAP

KENNETH R. KELLUM¹

ABSTRACT. It is shown that if $n, m \ge 1$ are integers, then there exists an almost continuous function from the *n*-sphere S^n onto S^m which commutes with the antipodal map.

Introduction. Hunt [1] has generalized the Borsuk-Ulam antipodal point theorem by proving that no connectivity function $f: S^n \to S^{n-1}$ commutes with the antipodal map. Since, if n > 1, by Corollary 1 of Stallings [5], such a function is almost continuous, it seems reasonable to ask whether Hunt's result holds for almost continuous functions. The purpose of this note is to give a counterexample.

Definitions and conventions. In the sequel we regard a function as being identical with its graph.

Suppose $f: X \to Y$. That f is almost continuous means that if $f \subset D$, where D is an open subset of $X \times Y$, then there exists a continuous function $g: X \to Y$ such that $g \subset D$. That K is a minimal blocking set of a non-almost continuous function f means that K is a closed subset of $X \times Y$, $K \cap f = \emptyset$, $K \cap g \neq \emptyset$ whenever $g: X \to Y$ is continuous, and no proper subset of K has the preceding properties.

We denote by S^n the set of all points $x = (x_1, x_2, \dots, x_{n+1})$ of Euclidian (n+1)-space R^{n+1} such that $(\sum_{i=1}^{n+1} x_i^2)^{1/2} = 1$. A function $f: S^n \to S^m$ is said to commute with the antipodal map if f(-x) = -f(x) for each x in S^n .

The natural projection map of $X \times Y$ onto X is denoted by $p: X \times Y \to X$. The letter c denotes the cardinality of the real line.

The main results.

THEOREM 1. Suppose $f: X \to S^m$ is not almost continuous where $m \ge 1$ and X is a compact metric space. There exists a minimal blocking set K of f and p(K) is a perfect set.

Received by the editors November 1, 1974.

AMS (MOS) subject classifications (1970). Primary 54C10, 54F60.

Key words and phrases. Almost continuous, antipodal map.

¹ Author supported in part by NSF Grant GY-10729.

PROOF. That K exists follows from Theorem 2 of [3]. Assume that z is an isolated point of p(K) and let U be a neighborhood of z such that $U \cap p(K) = \{z\}$. Note that $p(K) \neq \{z\}$, because otherwise the constant map $g: X \to S^m$ such that g(x) = f(z) would not intersect K. Thus $K - (p^{-1}(z) \cap K)$ is a closed, proper subset of K. By the minimality of K there exists a continuous function $g: X \to S^m$ such that $p(K \cap g) = \{z\}$. Let y be a point of S^m different from f(z) and g(z) and let V be a neighborhood of z such that $\overline{V} \subset U$ and $g(\overline{V}) \subset S^m - \{y\}$. Since $S^m - \{y\}$ is homeomorphic to R^m , it is an AR [4, p. 339], so the continuous function $h: (\overline{V} - V) \cup \{z\} \to S^m - \{y\}$, defined by $h|(\overline{V} - V) = g|(\overline{V} - V)$ and h(z) = f(z), has a continuous extension $h: \overline{V} \to S^m - \{y\}$. But then $g' = g|(X - V) \cup h'$ is a continuous function from X into S^m and $g' \cap K = \emptyset$, a contradiction. Thus p(K) has no isolated points and is a perfect set.

THEOREM 2. Suppose n and m are integers with n, $m \ge 1$. There exists an almost continuous function $f: S^n \to S^m$ which commutes with the antipodal map.

PROOF. Denote by θ the set of all closed subsets T of $S^n \times S^m$ such that $\operatorname{card}(p(T)) = c$. It follows from Theorem 1 that if $f: S^n \to S^m$ intersects each member of θ , then f is almost continuous. Using transfinite induction in a manner quite similar to the proof of Theorem 2 of [2], for each T in θ we may choose x_T in p(T) and define $f(x_T)$ and $f(-x_T)$ so that $(x_T, f(x_T))$ is in T and $f(-x_T) = -f(x_T)$. Now, if x is a point of S^n such that f(x) is not defined by the above induction, neither is f(-x) defined. So, for each such x, we may define f(x) and f(-x) arbitrarily so long as f(-x) = -f(x). This completes the proof.

REFERENCES

- 1. J. H. V. Hunt, A connectivity map $f: S^n \to S^{n-1}$ does not commute with the antipodal map, Bol. Soc. Mat. Mexicana (2) 16 (1971), 43—45. MR 47 #9579.
- 2. K. R. Kellum, Almost continuous functions on Iⁿ, Fund. Math. 79 (1973), 213—215. MR 47#9598.
- 3. —, On a question of Borsuk concerning non-continuous retracts. II, Fund. Math. (to appear).
- 4. K. Kuratowski, *Topology*. Vol. II, PWN, Warsaw; Acadaemic Press, New York, 1968. MR 41 #4467.
- 5. J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249—263. MR 22 #8485.

DEPARTMENT OF MATHEMATICS, MILES COLLEGE, BIRMINGHAM, ALABAMA 35208