AXIAL MAPS WITH FURTHER STRUCTURE

A. J. BERRICK

ABSTRACT. For $F = \mathbf{R}$, \mathbf{C} or \mathbf{H} an F-axial map is defined to be an axial map $\mathbf{R}P^m \times \mathbf{R}P^m \to \mathbf{R}P^{m+k}$ equivariant with respect to diagonal and trivial F^* -actions. Analogously to the real case, it is shown that \mathbf{C} -axial maps correspond to immersions of $\mathbf{C}P^n$ in \mathbf{R}^{2n+k} while (for $F = \mathbf{R}$ and for $F = \mathbf{C}$, k odd) embeddings induce F-symmaxial maps. Examples are thereby given of symmaxial maps not induced by embeddings of $\mathbf{R}P^n$, and of \mathbf{R} -axial maps which are not \mathbf{C} -axial. Furthermore, the relationships which hold when $F = \mathbf{R}$, \mathbf{C} are no longer valid for $F = \mathbf{H}$.

Let F be one of the fields R, C or H of dimension d (= 1,2,4 respectively) over R, whose units F^* act on the right on $S(F^{n+1})$ to induce the projective space FP^n . Since the action of R^* extends to the action of F^* , we may regard F^* as acting also on RP^n and thence diagonally on $RP^n \times RP^n$, n = -1 (d). By way of generalisation of the usual definitions (F = R—see [2], [4], [12]), we say $f: RP^n \times RP^n \to RP^{n+k}$ is F-axial of type (n,k) if f restricts to homotopy essential maps on the axes of the product and is equivariant with respect to the above F^* -action on its domain and trivial F^* -action on its range. If further f is homotopy equivariant—through an F^* -equivariant homotopy—with respect to interchanging the factors of the domain and trivial \mathbb{Z}_2 -action on the range, f is F-symmaxial. (When $F = \mathbb{R}$ it is sometimes omitted from the notation.) This note explores the relationship between F-axial (resp. F-symmaxial) maps and the existence of an immersion (resp. embedding) of FP^n in \mathbb{R}^m , denoted $FP^n \subseteq (m)$ (resp. $FP^n \subset (m)$).

- 1. THEOREM. Let $F = \mathbf{R}$ or \mathbf{C} , with N = n or (2n + 1) respectively.
- (a) If $FP^n \subseteq (dn + k)$, then there exists an F-axial map of type (N, k).
- (b) If $FP^n \subset (dn + k)$, then there exists an F-symmaxial map of type (N, k), provided k is odd if $F = \mathbb{C}$.
- (c) If $FP^n \subset (dn + k)$, then the F-axial maps given by the constructions of (a) and (b) are homotopic through an F^* -equivariant homotopy.
- (d) If there exists an F-axial map of type (N,k) with $2k \ge dn + 1$, then $FP^n \subseteq (dn + k)$.

PROOF. (a),(d). Let γ be the realisation of the Hopf line bundle, ε the trivial real line bundle, and τ the real tangent bundle over FP^n . In the following sequence of implications, \dagger indicates the use of the condition $2k \ge dn + 1$.

Received by the editors December 30, 1974.

AMS (MOS) subject classifications (1970). Primary 57D40; Secondary 55D99, 55F25, 55F50. Key words and phrases. Axial map, embedding, immersion, projective space, skew map, symmaxial map, tangent bundle.

$$FP^n \subseteq (dn + k) \Leftrightarrow \tau$$
 is a subbundle of $(dn + k)\varepsilon$ [6]
 $\Leftrightarrow \tau \oplus d\varepsilon = (n + 1)\gamma^*$ is a subbundle of
 $(dn + k + d)\varepsilon$ [7, p. 100]
 $\uparrow \Leftrightarrow$ there exists a skew map
 $(n + 1)\gamma^* \to (d(n + 1) + k)\varepsilon$ [5, (1.2)]
 \Leftrightarrow there exists a map $S^N \times S^N \to S^{N+k}$ which induces
an F -axial map of type (N, k) .

(b) Let $f \colon F^P \to \mathbf{R}^{dn+k}$ be an embedding. (To use conventional matrix notation, we shall assume here that F^* acts on \mathbf{R}^{dn} on the left.) Write $\mathbf{R}_0^m = \mathbf{R}^m \setminus \{0\}$; $v \colon \mathbf{R}_0^m \to S^{m-1}$, $x \mapsto x/\|x\|$; $\pi \colon S^N \to FP^N$, and set $\overline{\Delta} = \{(x, wx) \in \mathbf{R}_0^{N+1} \colon w \in F^*\}$, $\Delta' = \overline{\Delta} \cap (S^N \times S^N)$, $e = (1, 0, \dots, 0) \in \mathbf{R}^{N+1+k}$, and $j \colon \mathbf{R}^{dn+k} \to \mathbf{R}^d \oplus \mathbf{R}^{dn+k}$ for the inclusion of the orthogonal complement of Fe in \mathbf{R}^{N+1+k} . For $u, v \in S^N$, write $a = \langle v, u \rangle_F$; and define

$$G: (S^{N} \times S^{N}, S^{N} \times S^{N} \setminus \Delta') \times I \to (\mathbf{R}^{N+1} \times \mathbf{R}^{N+1}, \mathbf{R}_{0}^{N+1} \times \mathbf{R}_{0}^{N+1} \setminus \overline{\Delta}),$$

$$G(u, v, t) = \begin{bmatrix} 1 - |a|^{2}t^{2} & -\overline{a}t \\ at & 1 \end{bmatrix} \begin{bmatrix} u \\ v - au \end{bmatrix};$$

$$g: (\mathbf{R}^{N+1} \times \mathbf{R}^{N+1}, \mathbf{R}_{0}^{N+1} \times \mathbf{R}^{N+1} \setminus \overline{\Delta}) \to (\mathbf{R}^{dn+k}, \mathbf{R}_{0}^{dn+k}),$$

$$g(x, y) = \begin{cases} \|x\| \cdot \|y\| \cdot \|f\pi\nu(x) - f\pi\nu(y)\| \cdot [f\pi\nu(x+y) - f\pi\nu(x-y)], \\ (x, y) \in \mathbf{R}_{0}^{N+1} \times \mathbf{R}_{0}^{N+1} \setminus \overline{\Delta}, \\ 0, (x, y) \in (\mathbf{R}^{N+1} \vee \mathbf{R}^{N+1}) \cup \overline{\Delta}. \end{cases}$$

Hence, define

$$F: S^N \times S^N \times I \to S^{N+k}, \qquad F(u,v,t) = \nu(ae + jgG(u,v,t)).$$

The reader may verify that these maps behave as required, so that $F_0: S^N \times S^N \to S^{N+k}$ induces an F-symmaxial map of type (N,k). (When $F = \mathbb{C}$, the involution on $\mathbb{R}P^{2n+1+k}$ given by $\pm (ae+j(z)) \mapsto \pm (\bar{a}e+j(z))$ is homotopic to the identity provided k is odd.)

(c) Clearly it suffices to establish that the tangent bundle monomorphism

$$\tau(f): \tau FP^n \to \tau \mathbf{R}^{dn+k} = \mathbf{R}^{dn+k} \times \mathbf{R}^{dn+k}$$

is fibre-homotopic to

$$g': \tau FP^n \to \mathbf{R}^{dn+k} \times \mathbf{R}^{dn+k}, \qquad g'(\lceil x,y \rceil.F^*) = (f\pi(x),g(x,y))$$

(f, g as in (b)), since the F-axial maps of both (a) and (b) come from composition with G_0 : $S^N \times S^N \to \pi^* \tau F P^n$ specified in (b).

But this is evident from the following homotopy (cf. [5, Lemma 2.2]):

$$H: \tau FP^n \times I \to \mathbb{R}^{dn+k} \times \mathbb{R}^{dn+k}$$

$$H([x,y].F^*,t) = (f\pi(x), [f\pi\nu(x+(1-t)y) - f\pi\nu(x-(1-t)y)]/(1-t^2)).$$
(Note that, as $t \to 1$, $1-t^2 = 2(1-t) + O((1-t)^2)$.)

By [2], the numerical condition of 1(d) is satisfied when n > 7 if $F = \mathbb{C}$ and may be omitted if $F = \mathbb{R}$. Thus 1(a),(d) yield that $\mathbb{C}P^n \subseteq (2n + k)$ implies

 $\mathbb{R}P^{2n+1} \subseteq (2n+k+1)$ -cf. [12, (5.2)]. When $F = \mathbb{R}$, 1(b),(c) answer affirmatively a question raised in [2] (for which, I understand, Professors Feder and Gitler also have a proof); we now show the converse is not true.

2. Example. Let *n* be a power of 2. Then by [8], $\mathbb{C}P^n \subset (4n-1)$; 1(b) now implies the existence of a C-symmaxial (and so **R**-symmaxial) map of type (2n+1, 2n-1). But [9], [10] $\mathbb{R}P^{2n+1} \not\subset (4n)$, so that the existence of a symmaxial map of type (n,k) does not imply $\mathbb{R}P^n \subset (n+k)$.

The next result is perhaps more predictable. Nevertheless, it illustrates the falsity of the converse to [12, (5.2)].

3. EXAMPLE. Let $n + 1 = 2^r$, where $r \equiv 2$, 3 (4). Then by [4] $\mathbb{R}P^{2n+1} \subseteq (4n - 2r)$; so by [11] there exists an \mathbb{R} -axial map of type (2n + 1, 2n - 2r - 1). However, by [13], $\mathbb{C}P^n \not\subseteq (4n - 2r - 1)$, whence, from 1(c), the existence of an \mathbb{R} -axial map of type (2n + 1, k) does not imply the existence of a \mathbb{C} -axial map of type (2n + 1, k).

Since 1 shows that the situation for $\mathbb{R}P^n$ largely carries over to $\mathbb{C}P^n$, one might naively hope that a comparable result holds for $\mathbb{H}P^n$. However, [3,§4] casts doubt upon, and 5 below puts paid to, such hopes.

4. LEMMA. If there exists an H-axial (resp. H-symmaxial) map f of type (4n + 3,k), then there exists a C-axial (resp. C-symmaxial) map g of type (4n + 3,k).

PROOF. Write $\mathbf{R}^{4n+4} = \mathbf{C}^{2n+2} \oplus \mathbf{C}^{2n+2}$ which we identify with \mathbf{H}^{n+1} as $\mathbf{C}^{2n+2} \oplus \mathbf{C}^{2n+2}j$. For $x_i, y_i \in \mathbf{C}^{2n+2}, i = 1, 2, f$ induces g by setting

$$g\big(\pm(x_1,x_2),\pm(y_1,y_2)\big)=f\big(\pm(x_1+\bar{x}_2j),\,\pm(y_1+\bar{y}_2j)\big),$$

since $(x_1a + (\overline{x_2a})j) = (x_1 + \overline{x_2}j)a$ for $a \in \mathbb{C}^*$. If f is symmatial then clearly g is too.

5. Example. Let n be a power of 2. From [8], $\mathbf{H}P^n \subset (8n-3)$. But if there were an \mathbf{H} -symmaxial—or even \mathbf{H} -axial—map of type (4n+3,4n-3), then by 4 above there would exist a \mathbf{C} -axial map of type (4n+3,4n-3). So by 1(c) $\mathbf{C}P^{2n+1} \subseteq (8n-1)$, which is contradicted by [1], [13]. Hence, $\mathbf{H}P^n \subset (4n+k)$ does not imply the existence of an \mathbf{H} -axial map of type (4n+3,k).

As for positive results in the quaternionic case, we must content ourselves with the following observation.

6. Note. If there exists an H-axial map of type (4n + 3,k) with $2k \ge 4n + 1$, then $HP^n \subseteq (4n + 3 + k)$. The proof is as for 1(c) above, save that one uses the characterisation of the tangent bundle given in [3, §4].

REFERENCES

- 1. J. Adem and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana (2) 8 (1963), 53-78. MR 29 #5255.
- 2. J. Adem, S. Gitler and I. M. James, On axial maps of a certain type, Bol. Soc. Mat. Mexicana (2) 17 (1972), 59-62.
- 3. M. F. Atiyah, *Thom complexes*, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 #A1727
- 4. S. Gitler and M. Mahowald, Some immersions of real projective spaces, Bol. Soc. Mat. Mexicana (2) 14 (1969), 9-21. MR41 #2696.

416 A. J. BERRICK

- 5. A. Haefliger and M. W. Hirsch, *Immersions in the stable range*, Ann. of Math. (2) 75 (1962), 231-241. MR 26 #784.
- 6. M. W. Hirsch, *Immersions of manifolds*, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980.
 - 7. D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 #4821.
- 8. I. M. James, Some embeddings of projective spaces, Proc. Cambridge Philos. Soc. 55 (1959), 294-298. MR 22 #236.
- 9. J. Levine, Embedding and immersion of real projective spaces, Proc. Amer. Math. Soc. 14 (1963), 801-803. MR 27 #5272.
- 10. M. Mahowald, On the embeddability of the real projective spaces, Proc. Amer. Math. Soc. 13 (1962), 763-764. MR 26 #782.
- 11. B. J. Sanderson, A non-immersion theorem for real projective space, Topology 2 (1963), 209-211. MR 27 #1968.
- 12. _____, Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3) 14 (1964), 137-153, MR 29 #2814.
- 13. B. J. Sanderson and R. L. E. Schwarzenberger, Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322. MR 26 #5589.
 - St. John's College, Oxford OX13JP, England