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RECURSIVENESS IN nj PATHS THROUGH 6

HARVEY FRIEDMAN1

Abstract.    Kleene's 0 is recursive in some nj path through 6. If every hyp

set is recursive in a given nj set, then 0 is recursive in its triple jump.

Let 0 and <e be defined as in Rogers [7, p. 208]. A path through 0 is a subset

of 0 which is linearly ordered by <e, closed under <e, and has order type ux.

For a G 0, let 0(a) = {b: b <e a}, and | a | be the ordinal of a.

There has been some interest in nj paths through 0. The existence of such

paths was proved in Feferman and Spector [1]. Jockusch [4] has shown that

there are nj paths P through 0 with 0(e) recursive for every e G P, as well as

those with 6(e) a complete r.e. set, for the e G P with ordinal co2. Paths with

the former property will be called regular.

Questions have arisen concerning the "information coded up" by n{ paths

through 0. It is clear that nj paths through 6 are all nonhyperarithmetic n{

sets and, hence, all have hyperdegree 0. However, from the point of view of

enumeration reducibility or truth table reducibility, very little information is

coded by nj paths through 0. Kreisel [5] has noted that any hyperarithmetic

set enumeration reducible to a n{ path P (using the definition in Rogers [7, p.

146]) is enumeration reducible to 6(e), for some e G P. Parikh [6] has shown

that any hyperarithmetic set truth table reducible to a n| path P is truth table

reducible to 0(e), for some e G P.

The above results immediately imply that every hyperarithmetic set enumer-

ation reducible to some nj path is r.e., and every hyperarithmetic set truth

table reducible to some n{ path is A;?. As noted in Jockusch [3], these results

also imply that there exists a nj path P such that every hyperarithmetic set

which is enumeration reducible or truth table reducible to P is recursive.

Theorem 1 below is a strengthening of the Parikh result for truth table

reducibility. We originally found the argument in Theorem 1 to give a

simplified proof for the truth table reducibility case. We are grateful to C.

Jockusch and J. Owings for jointly pointing out to us that our argument works

for weak truth table reducibility (^w). See Rogers [7, p. 158] for the definition

of =%.

Theorem 1. Let P be a nj path through 0. If A ^w P and A is hyperarithmet-

ic, then A tkw6(e) for some e G P. In particular, (A ^w P and A is hyp)

—> A is A2; if P is regular, (A tkw P and A is hyp) -» A is recursive.

Proof. The proof proceeds informally, using concepts from metarecursion
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theory. Let / be the unique order preserving map from co, one-one onto P.

Then/is metrarecursive. Assume A ?kw P, and A is hyp.

Let F be the partial recursive operator given by a computation procedure,

on 'eP(co) (or 2" if characteristic functions are preferred to sets) corresponding

to ' A ^w P ' . That is, there is a recursive function h such that h(n) is a bound

on the numbers k that are used in F to compute the truth value of ' n G A '

using the truth values of' k G P ' . Without loss of generality, we may assume

that F(C) = D implies that h(n) is a bound on the numbers k that are used

in F to compute the truth value of ' n G D ' using the truth values of

•k e C .
Clearly, for each n and sufficiently large a < co,, we have n G A «-» n

G F(6(f(a))). Therefore we may define a sequence of ordinals an < co. such

that an is the least ordinal greater than «„_, withy G A <->y G F(0(/(a„))),

for ally Si «. Since A,/are metarecursive, it is clear that <a„> is metarecursive.

Hence lim(a„) = X < coi. Since lim(0(/(a„))) = 0(/(A)), it is easy to see

that F(e(f(X))) = A, and we are done.

We give a brief sketch of our proof of the existence of n{ paths through I?

of Turing degree G. If we take a Hx predicate of functions that has solutions

but no hyperarithmetic solutions (e.g., see Gandy [2]) and pass to the Kleene-

Brouwer ordering restricted to the unsecured sequence numbers for the

predicate, we obtain a recursive linear ordering with infinite descending

sequences but with no hyperarithmetic descending sequences. The well-

founded part of such a linear ordering must be Turing equivalent to a n} path

through  6.  Now  if  every  solution  to  the  predicate  codes  up  a  lot  of

information, so must the well-founded part (since some infinite descending

sequence must be recursive in the well-founded part). For instance, if every

hyperarithmetic set is recursive in every solution, then every hyperarithmetic

set will be recursive in the well-founded part (thereby answering the question

in footnote 2 of [5]). In our proof, the n^ predicate is chosen so that its

solutions code up enough information for us to conclude that the correspond-

ing well-founded part is of Turing degree 0.

Let 0*, < be as in Harrison [3]. All facts appealed to here about 0*, < can

be found in Harrison [3].

For sets B C co, let (B)n be {m: 2"3m G B). Define S(e,B) iff (1) co,B = co,,

(2) (B)0 = {0}, if 0 < e, (3) (B)2„ = (B)„ U {2m: m G (B)n), if 2" -< e, (4)

(B)3.5a = (3 • 5m: tpm is  total and (V/i)(«pw(/i) -< tpm(n + 1)) and (\fn)(3k

< 3 • 5")(<p» G (B)k)} U {b: (3k < 3 ■ 5a)(b G (B)k)}, if 3 • 5" < e.

Lemma 1. (a) (3e G 6* - 6)(3B)(S(e,B)); (b) if S(e,B), n < e, n <= 6,

then (B)„ = {m: \m\ si |w|}; (c) ifS(e,B), e G 0* - 0, then B is not hyp.

Proof. Clearly (Me G 6)(3B)(S(e,B)). Now {<?: e G 0* & (3B)(S(e,x))}

is 2} and, hence, unequal to 0. Since 0 is included, clearly (3e)(e G 0*

-e&(3B)(S(e,B))).
(b) is shown by straightforward transfinite induction on | n |. It is well

known that every hyp set is recursive in some {/?: \n\ Si a}. Since [a G 0: a

< e) is a path through 0 for e G 0* - 0, it is clear that (S(e, B) & e

G 0* — 0) —> every hyp set is recursive in B. Hence (c) holds.

From now on we fix e G 0* - 0 such that (3B)(S(e, B)).
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Lemma 2. There is a recursive tree of finite sequences which has infinite paths,

and such that for every infinite path f there is a B =Tf with S(e,B).

Proof. Since S(e, B) is 2[, there is a recursive predicate 7? such that

S(e,B) <-> (3g)(Vn)(R(n,g(n),ch(B)(n))).

Let T be the recursive tree of pairs whose infinite paths correspond to pairs

(g,h}, where (\fn)(R(n,g(n),7i(n))). Then Fhas the desired properties.

From now on, we fix the recursive tree T of Lemma 2. Let <* be the usual

Kleene-Brouwer ordering. Then (T, <*) is a recursive linear ordering. It is

easy to verify that (T, <*) is not a well ordering, yet has no hyperarithmetic

descending sequences. Let A C Tbe the well-founded part of (T, <*).

Lemma 3.    (A, <*) has order type co,.

Proof. If the order type of (A, <*) was a < co,, then A would by hyp, and

hence there would be hyperarithmetic descending sequences in (T, <*). If the

order type of (A, <*) was greater than co,, we would have a recursive well

ordering of type co..

Lemma 4.    Some infinite path through T is recursive in A.

Proof. Define the function/: co —> co given by (l)/(0) = < >, (2) f(n + 1)

= f(n) * k, where k is the least number such that/(n) * k G T — A. To see

that / is well defined, suppose that f(m) has been defined for all m ^ n, f(n)

= (a0,... ,a„_, > G T - A. Choose an arbitrary 5 <* f(n), s G T - A. If

s,f(n) differ somewhere, let s = (a0,... ,ak,b,... ), where b < ak + x. Then

s Si* (a0,... ,ak,b) G T — A, contradicting the choice of f(k + 1). Hence s

must properly extend X«)- Clearly s^*if«+l £ /- A. Choose f(n + 1)

= (a0,.. . ,an_x,k}, where k is least such that (a0,.. . ,an_x,k} G T — A. It

is immediate that/is an infinite path through T recursive in A.

Lemma 5. There is a regular Ylx path P through 0 of the same Turing degree

as A.

Proof. We sketch the proof. The first step is to form the linear ordering

(T*,R), where T* is the least set such that 3k G T* for all k G T, and

2k G T* for all k G T*. Take R to be the linear ordering on T* defined by

3*7?3m ~ k <* m, 2kRx ^ (kRx & x # 2k), xR2k <-» (xRk or x = k). Let

A* be the well-founded part of (T*,R). As in Lemma 3, clearly (A*,R) has

order type co,. Note that A* =T A.

The second step is to apply the recursion theorem to obtain a partial

recursive function/ with domain T* such that (l)/(a) = 0, where a is the 7?-

least element of T*, (2) f(2b) = 2m, (3) for b # a,/(3*) > b, and/(36)

= 3 • 5e, where e is the Godel number of some recursive sequence f(y0),

f(yx), ... such thaty0, yx, ... is a strictly T\-increasing sequence with limit 3*

in(F*,T?).

It is clear that/maps (T*,R) isomorphically onto an initial segment of <.

By the order type of (A*,R), this initial segment of 0 must be a path P through

0. By a hierarchy computation, P is n{. Because of the condition /(3*)

> b for b # a, it is easily seen that P =T A*, and P is regular. Hence, P is a
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regular IT, path through 0 of the same Turing degree as A, and we are done.

Lemma 6. There is a regular Tl\ path P through 0 and an x with S(e, B) such

that B Si t- P.

Proof. Immediate from Lemmas 2, 4 and 5.

Lemma 7.    Let P be any nj path through 0, and S(e, B). Then 0 ^T(P,B).

Proof. We first claim that

n G 0 <-> (3/ «< e)(3k G P)(k £ (B)t & n G (B\).

Suppose n G 0. Let t < e, \t\ = \n\ < \k\. Then by Lemma 1, k G (7?)r, «

G (7?)r Suppose t < e, k G 7>, /c G (B)t, n G (5),. By the cumulative way

in which S was defined, clearly \t\ < \k\. Hence, |n| si |/|, and so n G 0.

Let a G 0* be such that {£: b < a} n 0 = 7». We claim

n G 0 -> (V/ < e)(Vk < a)(k (£ P ^ (k E (B), -^ziG (B)t)).

Suppose n G 0, / < e, k < a, k G P, n G (fi),.  Then   |z*| < \n\.  Hence,  k

G (B)t, since zt G 0.

We claim

(Vf < e)(Vk < a)(k G P -» (k G (75), -* « G (B),)) -* n G 0.

Suppose

(Vf < e)(V/t < a)(A: G 7" -> (A: G (B), -^ zi 6 (75),)),        n G 0.

Now for each k G P there is a r -< e such that « G (B), & k G (B),; namely

take |/c| = \t\. Hence, either P is r.e. in B or

(3A: < a)(3t < e)(k G P'& « G (7i), <fe A: G (5),).

The first contradicts co,s = co,. The second contradicts our assumption.

Summarizing, we see that © is A? in (7\73). Hence, 0 Sir (P,B).

Theorem 2. 0 is recursive in some regular Y\\ path through 0.

Proof. Immediate from Lemmas 6 and 7.

The proof of Lemma 7 led us to the following theorem and its corollary.

Carl Jockusch has recently found a simpler proof of Theorem 3, and we give

his proof rather than ours.

Theorem 3. Let B be an unbounded subset of 0. If every hyperarithmetic set is

recursive in B then 0 Si7- B'".

Proof. For eachy' G 0, {k: \k\ < |/|} = 0 is recursive in a n,0 singleton in

a uniform way. I.e., there are partial recursive functions F, G such that if

j G 0, then F(j) is the index of a Tlx predicate Ppts) which has a unique

solution g, and ch(0y) is recursive in g with index G(j). Hence
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a G 0 <-> (3/)0" G 7i & (3z')({/'}B is total

&PF{j)({i}B)&{G(f)){i]B(a)= 1)).

Therefore, 0 is 2§  in 7i.

Corollary. If every hyperarithmetic set is recursive in a fixed Yi\ set B, then

e% b'".

G. Sacks and S. Simpson have recently and independently constructed a IIJ

set 77 such that every hyperarithmetic set is recursive in B and 0 =T B'".

It is not known whether 0 is recursive in every n{ path through 0, or even

whether 0' is recursive in every n} path through 0.
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