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(CA) TOPOLOGICAL GROUPS

DAVID ZERLING

Abstract. A locally compact topological group G is called (C4) if the

group of inner automorphisms of G is closed in the group of all bicontinuous

automorphisms of G. We show that each non-(C4) locally compact connect-

ed group G can be written as a semidirect product of a (C A) locally compact

connected group by a vector group. This decomposition yields a natural

dense imbedding of G into a iC A) locally compact connected group P, such

that each bicontinuous automorphism of G can be extended to a bicontin-

uous automorphism of P. This imbedding and extension property enables us

to derive a sufficient condition for the normal part of a semidirect product

decomposition of a (C A) locally compact connected group to be (C A).

1. Introduction. The purpose of this paper is to extend the results in Zerling

[5] to the case of locally compact connected groups.

If G and H are topological groups and <p is a one-to-one continuous

homomorphism from G into TT, <p will be called an imbedding. <p will be called

closed or dense as <p(G) is closed or dense in TT. For any topological group G,

we let Z(G) and G0 denote the center of G and the identity component group

of G, respectively.

If G is a locally compact group, A(G) will denote the topological group of

all bicontinuous automorphisms of G, topologized with the generalized

compact-open topology. G will be called (C A) if T(G), the subgroup of A(G)

consisting of all inner automorphisms of G, is closed in A(G).

If G and TT are locally compact connected groups and <p: G —» TT is a dense

imbedding, then <p(G) is normal in H, and the mapping pG: H —> A(G)

defined by p$(h)(g) = y~x(h<p(g)h~x) is a continuous homomorphism [2]. If

<p is a closed imbedding, such that <p(G) is normal in TT, then pG is clearly

continuous.

For any locally compact group TT we let IH(h) denote the inner automor-

phism of H determined by h G TT. More generally, if A is a subset of TT, Ih(A)

will denote the set of all inner automorphisms of TT determined by the

elements of A. T#(TT) will be written as T(TT), and the continuous homomor-

phism h i-» IHih) of TT onto T(TT) will be denoted by IH.

If A is a locally compact connected group and t/<: TT —* AiN) is a contin-

uous homomorphism of some connected topological group TT into AiN), then

N © H will denote the semidirect product of N by TT, which is determined by

\p. On the other hand, if G is a locally compact connected group containing a

closed normal connected subgroup N and a closed connected subgroup TT,

such that G = NH, N n TT = {e}, and such that the restriction of pN to TT is

one-to-one, then whenever we write pNiH) it will be understood that the
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topology is the unique locally compact topology for which pN: 77 —> pN(H) is

bicontinuous. Therefore, we will frequently write N © 77 or N © pN(77) for G.

Our main results are stated in Theorems 2.1-2.3.

2. Main results. Suppose that G is a locally compact connected group. Then

we can find a neighborhood U of the identity such that U = Kx L*, where

L* is a local Lie group and K is a compact group. Moreover, K is normal in

G, and G = KL*, [K,L*\ = {e}, where L* is the group generated by L* in G

(cf. Yamabe [3], [4]).
Let L denote the uniquely determined connected Lie group such that

i: L —> L* is a continuous isomorphism of L onto L*. Let D* — L* n AT, and

let 7) = z'_1(7)*) in L. Since K n L* = {e}, £> is a discrete normal subgroup

of L, and, therefore, a central subgroup of L.

The mapping Kx L -* G denned by (k, 1) m> & • z'(l) is an open continuous

homomorphism of Kx L onto G. Therefore, G ^ (KX L)/D, where 73

= {(i(d~l),d): d G £)}. G = KL* will be called a canonical decomposition

of G.

Lemma 2.1. Lei* G be a locally compact connected group and let G = KL* be

a canonical decomposition of G. Then G is (CA) if and only if L is (CA).

Proof. We have G = (7CX L)/D. Let AD(L) denote the identity compo-

nent group of the group of bicontinuous automorphisms of L which leave D

elementwise fixed. From Goto [1] we see that AD(L) is a closed connected Lie

subgroup of A(L) and A0(G) = 7G(7C0) X B, where B = [a: a G A0(G),a(x)

= x,x G K0}. Let/: AD(L) -» A(G) be defined by f(a)(k, 1)75 = (k,a(\))D.

Again from Goto [1] we see that / is a bicontinuous isomorphism into B.

Hence, f(AD(L)) is closed in A(G), since it is locally compact in the relative

topology. Since

A(G) D /c(Ao) Xf(AD(L)) D 7c(A-0) X/(/(£)) = 7(G),

we see that G is (CA) if and only if L is (CA).

Theorem 2.1. Let G be a non-(CA) locally compact connected group. Then

we can find a (CA) locally compact connected group N, a toral group T, which can

be imbedded in A(N), and a dense vector subgroup V of T, such that:

(i) P = N © T is (C A).

(ii) GsjV©K.

(iii) Z(G) is contained in N.

(iv) Z0(G) = Z0(P), and tt(Z(P)) is finite where tt is the natural projection

of P onto T. Moreover, if G/Z(G) is homeomorphic to Euclidean space, then

Z(G) = Z(P).

Proof. Let G = KL* be a canonical decomposition of G. Since G is

non-(CA), L will be non-(C^4) by Lemma 2.1. Hence there exists a (CA)

analytic group 77, which contains L as a dense analytic subgroup, such that

the following properties stated in the main structure theorem of Zerling [5] are

satisfied:



(CA) TOPOLOGICAL GROUPS 347

(1) H = M ® T, where AT is a (C4) analytic group and T is a toral

group in ,4 (AT).

(2) L = M ® V, where V is a dense vector subgroup of T.

(3) ZiL) is contained in AT.

(4) Z0iL) = Z0(TT), and 7r'(Z(TT)) is finite, where 77' is the natural

projection of TT onto T. Moreover, if L/ZiL) is homeomorphic to

Euclidean space, then ZiL) = Z(TT).

(5) Each bicontinuous automorphism a of L can be extended to a

bicontinuous automorphism e'(a) of TT, such that e': AiL)

—> AiH) is a closed imbedding.

Let j: K X L -* K X H be the dense imbedding induced by the dense

imbedding of L into H. Then since D is central in L, and since the center of

L is contained in AT by (*), we see thaty/D) will be a discrete central subgroup

of K X H. We have G = (KxL)/D and we let (Kx L)/D -> (AT X TT )/T5 be
the dense imbedding induced by j, where we have identified D andy'(Z)). Let

P = iK X H)/D = iK X (AT © T))/D.

Because [kD: k G K} ■ [hD: h G TT} is a canonical decomposition of P, with

TT -* {hD: h E H) being a continuous isomorphism onto, we see from

Lemma 2.1 that P is a (C /F) locally compact connected group.

Since D is contained in AT, we see that D is contained in AT X AT. Consider

to: T^> AiiKX M)/D), where w(t)(A:, w)T3 = (k,r(m))D. w is a well-defined

imbedding, since each t G F keeps the center of L elementwise fixed. Now

consider ((K X AT)/T3) © T and let

A: (TCx(AT© T))/D -^((KxM)/D)® T,

where A((fc,(m,r))D) = ((k,m)D,T). A is a well-defined bicontinuous isomor-

phism onto ((KxM)/D)®T. Hence,

P==±((KxM)/D)®T   and    G = ((Tv~X AT)/T3) © F.

We let N = (TC X AT)/T3. Since AT is (C ^) from (*), we have that N is (C ^)
from Lemma 2.1.

Since AT is connected and D is discrete, it is easy to see that

Z(G) = (Z(K) X Z(L))/D sat {((k,m)D,e): k G Z(K),m G Z(L)},

which is contained in N. In the same way we see that

Z(P) = {((k,m)3,T): k G Z(K),(m,r) G Z(TT)}.

Now let 77 denote the natural projection of P onto T. Since there are only

finitely many t G Tsuch that (m,t) G Z(TT) from (*), it is clear that tr(Z(P))

is finite.

If ((k,m)D,r) is in Z0(P), then, since 77(Z0(T>)) is both connected and finite,

Z0(P) is contained in N. Hence, Z0(G) = Z0(P) because G is dense in P.

Suppose that G/Z(G) is homeomorphic to Euclidean space. Since

G/Z(G) eat ((K X L)/D)/((Z(K) X Z(L))/D) ex (K/Z(K)) X (L/Z(L)),
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we see that L/Z(L) is homeomorphic to Euclidean space. Therefore, Z(L)

= Z(77) from (*). Hence, Z(G) = Z(P). This completes the proof of our

theorem.

Lemma 2.2. Maintaining the notation in the statement and proof of Theorem

2.1, we have that pG: T -» A(G) is one-to-one and pG(P) = (1(G)).

Proof. We first show that IG(N) is closed in A(G). To this end let AD(L)

denote the identity component group of the subgroup of A(L) composed of

elements which leave every element of D fixed. AD(L) is a closed analytic

subgroup of A(L) by Goto [1]. Clearly LL(M) is contained in AD(L). Moreover,

we may appeal to the proof of Theorem 2.1 in Zerling [5] to see that IL(M) is

actually closed in AD(L).

Let/: AD(L) -* A(G) be given by/(a)((A:, 1)75) = (k,a(\))D.
Again from Goto [1] we have that/ is a bicontinuous isomorphism into

A(G). Therefore, f(AD(L)) is locally compact and so it is closed in A(G).

Since direct computation shows that IG((k,m)D) = IG(k) ■ f(IL(m)), k

G K, m G M, we have 7G(7C) • f(IL(M)) = IG(N). Since IL(M) is closed in

AD(L), and/is a bicontinuous isomorphism into A(G), and f(AD(L)) is closed

in A(G), we see that IG(N) is closed in A(G).

pG is one-to-one on T because t(«, v)t~1 = (T(n),v) for n G N, v G V, t

G T. _

Now pG(P) = pG(N) ■ pG(T) = IG(N) ■ IG(V). Since IG(N) is closed in

A(G) and IG(V) is compact, we see that 7(G) = IG(N) ■ IG(V) = pG(P).

Theorem 2.2. Maintaining the notation in the statement and proof of

Theorem 2.1, we have that each bicontinuous automorphism a of G can be

extended to a bicontinuous automorphism e(a) of P. Moreover, if Z(K) is totally

disconnected, then e: A0(G) ^> A0(P) is a bicontinuous isomorphism onto a

closed subgroup of A(P).

Proof. We have

G = NV =sl N ® pN(V)   and    P = N © pN(V).

Let a be a bicontinuous automorphism of G. Then

G = a(N) ■ a(V) a a(N) © Pa(N)(a(V)).

Since pG(P) = 1(G) from Lemma 2.2, we can construct the continuous

homomorphism ty: T ^ pG(P), where

(1) *(t) = a° Pg(t) o a"1.

It is clear that ^ is a bicontinuous isomorphism of T onto a compact subgroup

of PG(P).

From (1) we have

(2) *(pN(i>)) = Pg(Po(n)W"))).        v e v-

Let C\p(po{N^(a(V))) denote the closure of p„(N)(o(V)) in P. We see from (2)



(CM) TOPOLOGICAL GROUPS 349

that the restriction of pG to C\P(pa^N^(a(V))) is one-to-one. We also see from

(1) and (2) that

(3) Pg(Pc(nMV))) c *(T) C C\A{G)(pG(Pa{N)(a(V)))).

Since "^(T) is compact, we see from (3) that

W = C\A{G)(PG(P(,{N)(a(V)))).

We now wish to show that ClP(pa,N)(a(F))) is a toral group; for once we

know this we can conclude that

(4) *(F) = PG(C\P(pa(N)(a(V)))).

To this end we let /in(A) and A0(a(N)) denote the identity component groups

of A(N) and A(a(N)), respectively. Let

F: N © A0(N) -* a(N) ® A0(a(N))

be defined by F(n,a) = (a(n),a'), where a'(a(n)) = a(a(n)), n G N. F is a

bicontinuous isomorphism onto, and

F(P) = N®C\A{N)(pN(V)) = a(A)©Cl^(o(A,))(pa(A,)(a(F))),

F(ClA(N)(pN(V))) = C\A{a{N))(Pa{N)(a(V))),

F(pN(V)) = Po{N)(a(V)).

Therefore,

C\P(Pa{N)(a(V))) = C\P(F(pN(V))

= F(ClP(p^(F))) = F(Cl^)(pA,(F))),

where we have identified P and F(P). Since F = C\A,NApN(V)) is a toral

group, we see that C\P(p<NAo(V))) is a toral group. Therefore, (4) is true.

Now let $ denote the inverse of the bicontinuous isomorphism pG from

ClP(po(A,)(a(F))) onto *(T). Define e(a): F -> F as follows:

(5) c(o-)(«,t) = a(n) • ($ ° *)(t).

First of all, (<5 ° *)(p») = «>(pG(po(7v)(a(lz)))), from (2). But

<b(pG(p0(N\(o(v)))) = Pa(N)(a(v)) rrom lrie definition of $. However,

p^jvjW")) = 0^(1;)) under the identifications v «-» pN(v) and a(iz)

<-> p0(Ar)(a(iz)). Therefore, from (5) we see that t(o)(g) = a(g) for all g in G.

Since G is dense in F, we also see that t(a) G A(P).

Now suppose that Z(AT) is totally disconnected (which would certainly be

the case if Z(G) were totally disconnected). Let AD(H) be the identity

component group of the group of bicontinuous automorphisms of TT which

leave D elementwise fixed. Let/': AD(H) -* A(P) be defined by f'(8)(k,h)D

— (k,S(h))D. Then from Goto [1] we have
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A0(G) = IG(K0)xf(AD(L)),

A0(P) = IP(K0)xf'(AD(H)),

and

IG(K0) = IK(Ko) = hiKo)-

Now consider the following diagram:

AD(L)^AD(H)

V      v
f(AD(L))-^f'(AD(H)).

For 8 G AD(L) we see from the definitions that (/' ° t')(8) and (e ° f)(8)

agree on G. Hence, they agree on P. Therefore, the diagram commutes. Thus,

e: A0(G) -^ A(P) is continuous. We have now completed the proof of our

main theorem.

Theorem 2.3. Let G be a (CA) locally compact connected group and let N

and H be a closed normal connected subgroup and a closed connected subgroup of

G, respectively, such that G = NH, N D 77 = [e]. Let N = KL* be a canonical

decomposition of N, and suppose that Z(K) is totally disconnected. Let tt denote

the natural projection of G onto 77.

(i) Ifir(Z(G)) is discrete, then N is (CA).

(ii) IfTr(Z(G)) is closed and N/Z(N) is homeomorphic to Euclidean space, then

N is (CA).

Proof. Suppose that N is non-(C A). Let N' be a (CA) locally compact

connected group such that N -» N' is a dense imbedding, where N' is to be

constructed according to the method in Theorem 2.1. Let e: A0(N) ~> A0(N')

be the continuous extension homomorphism constructed in Theorem 2.2. Let

B = e ° pN. Then the restriction of B to 77 is a continuous homomorphism of

77 into A(N'), and we let G' denote the semidirect product of N' and 77 that

is determined by B. Then G -» G' is a dense imbedding.

Let {(«,,/i,))bea net of central elements in G converging in G' to (n', h).

Case (i). In this case we can find some /i such that for v > p. we have hv = h.

Therefore, n„n~x = (ny,h)(ntl,h)~ is in Z(G) D N for v > p. Since the

center of N is closed in N' by Theorem 2.1, and since pN(H) keeps each npn~]

fixed (v > p.), we see that n'n~] is in the center of N and is held fixed by

pN(H). Hence, n'n~] G Z(G). Therefore, (n',h) = z • (n^h), z G Z(G). So

the center of G is closed in G'. Since G is (CA), we can appeal to Goto [2,

Proposition 9] to conclude that G = G'. Therefore, A' is (C A).

Case (ii). In this case, since tt(Z(G)) is closed in 77, there exists an element

n in N so that (h,h) is in Z(G). Since n'h~x = (n',h) ■ (n,h)~ , we see that

n'n~x g (center of G') n A". Therefore, n'n~x is in the center of N'. Since

N/Z(N) is homeomorphic to Euclidean space, N and A/' have the same center

by Theorem 2.1. Thus, n'n~x is in the center of N. Therefore, since n'n~x is

already in the center of G', it follows that n"n~x G Z(G). So («', h) = z • (n, h),

z G Z(G). As in case (i) above, we can conclude that N is (CA).
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