(CA) TOPOLOGICAL GROUPS

DAVID ZERLING

ABSTRACT. A locally compact topological group G is called (CA) if the group of inner automorphisms of G is closed in the group of all bicontinuous automorphisms of G. We show that each non-(CA) locally compact connected group G can be written as a semidirect product of a (CA) locally compact connected group by a vector group. This decomposition yields a natural dense imbedding of G into a (CA) locally compact connected group P, such that each bicontinuous automorphism of G can be extended to a bicontinuous

1. **Introduction.** The purpose of this paper is to extend the results in Zerling [5] to the case of locally compact connected groups.

If G and H are topological groups and φ is a one-to-one continuous homomorphism from G into H, φ will be called an imbedding. φ will be called closed or dense as $\varphi(G)$ is closed or dense in H. For any topological group G, we let Z(G) and G_0 denote the center of G and the identity component group of G, respectively.

If G is a locally compact group, A(G) will denote the topological group of all bicontinuous automorphisms of G, topologized with the generalized compact-open topology. G will be called (C A) if I(G), the subgroup of A(G) consisting of all inner automorphisms of G, is closed in A(G).

If G and H are locally compact connected groups and $\varphi: G \to H$ is a dense imbedding, then $\varphi(G)$ is normal in H, and the mapping $\rho_G: H \to A(G)$ defined by $\rho_G(h)(g) = \varphi^{-1}(h\varphi(g)h^{-1})$ is a continuous homomorphism [2]. If φ is a closed imbedding, such that $\varphi(G)$ is normal in H, then ρ_G is clearly continuous.

For any locally compact group H we let $I_H(h)$ denote the inner automorphism of H determined by $h \in H$. More generally, if A is a subset of H, $I_H(A)$ will denote the set of all inner automorphisms of H determined by the elements of A. $I_H(H)$ will be written as I(H), and the continuous homomorphism $h \mapsto I_H(h)$ of H onto I(H) will be denoted by I_H .

If N is a locally compact connected group and $\psi: H \to A(N)$ is a continuous homomorphism of some connected topological group H into A(N), then $N \otimes H$ will denote the semidirect product of N by H, which is determined by ψ . On the other hand, if G is a locally compact connected group containing a closed normal connected subgroup N and a closed connected subgroup H, such that G = NH, $N \cap H = \{e\}$, and such that the restriction of ρ_N to H is one-to-one, then whenever we write $\rho_N(H)$ it will be understood that the

Presented to the Society, January 26, 1975; received by the editors August 8, 1974 and, in revised form, October 30, 1974.

AMS (MOS) subject classifications (1970). Primary 22D45; Secondary 22D05.

topology is the unique locally compact topology for which $\rho_N \colon H \to \rho_N(H)$ is bicontinuous. Therefore, we will frequently write $N \otimes H$ or $N \otimes \rho_N(H)$ for G. Our main results are stated in Theorems 2.1–2.3.

2. Main results. Suppose that G is a locally compact connected group. Then we can find a neighborhood U of the identity such that $U = K \times L_1^*$, where L_1^* is a local Lie group and K is a compact group. Moreover, K is normal in G, and $G = KL^*$, $[K, L^*] = \{e\}$, where L^* is the group generated by L_1^* in G (cf. Yamabe [3], [4]).

Let L denote the uniquely determined connected Lie group such that $i: L \to L^*$ is a continuous isomorphism of L onto L^* . Let $D^* = L^* \cap K$, and let $D = i^{-1}(D^*)$ in L. Since $K \cap L_1^* = \{e\}$, D is a discrete normal subgroup of L, and, therefore, a central subgroup of L.

The mapping $K \times L \to G$ defined by $(k, 1) \mapsto k \cdot i(1)$ is an open continuous homomorphism of $K \times L$ onto G. Therefore, $G \cong (K \times L)/\tilde{D}$, where $\tilde{D} = \{(i(d^{-1}), d): d \in D\}$. $G = KL^*$ will be called a canonical decomposition of G.

LEMMA 2.1. Let G be a locally compact connected group and let $G = KL^*$ be a canonical decomposition of G. Then G is (CA) if and only if L is (CA).

PROOF. We have $G \cong (K \times L)/\tilde{D}$. Let $A_D(L)$ denote the identity component group of the group of bicontinuous automorphisms of L which leave D elementwise fixed. From Goto [1] we see that $A_D(L)$ is a closed connected Lie subgroup of A(L) and $A_0(G) = I_G(K_0) \times B$, where $B = \{\sigma : \sigma \in A_0(G), \sigma(x) = x, x \in K_0\}$. Let $f: A_D(L) \to A(G)$ be defined by $f(\sigma)(k, 1)\tilde{D} = (k, \sigma(1))\tilde{D}$. Again from Goto [1] we see that f is a bicontinuous isomorphism into B. Hence, $f(A_D(L))$ is closed in A(G), since it is locally compact in the relative topology. Since

$$A(G) \supset I_G(K_0) \times f(A_D(L)) \supset I_G(K_0) \times f(I(L)) = I(G),$$

we see that G is (CA) if and only if L is (CA).

THEOREM 2.1. Let G be a non-(CA) locally compact connected group. Then we can find a (CA) locally compact connected group N, a toral group T, which can be imbedded in A(N), and a dense vector subgroup V of T, such that:

- (i) $P = N \otimes T$ is (C A).
- (ii) $G \cong N \otimes V$.
- (iii) Z(G) is contained in N.
- (iv) $Z_0(G) = Z_0(P)$, and $\pi(Z(P))$ is finite where π is the natural projection of P onto T. Moreover, if G/Z(G) is homeomorphic to Euclidean space, then Z(G) = Z(P).

PROOF. Let $G = KL^*$ be a canonical decomposition of G. Since G is non-(CA), L will be non-(CA) by Lemma 2.1. Hence there exists a (CA) analytic group H, which contains L as a dense analytic subgroup, such that the following properties stated in the main structure theorem of Zerling [5] are satisfied:

- (1) $H = M \odot T$, where M is a (CA) analytic group and T is a toral group in A(M).
- (2) $L \cong M \otimes V$, where V is a dense vector subgroup of T.
- (3) Z(L) is contained in M.
- (4) $Z_0(L) = Z_0(H)$, and $\pi'(Z(H))$ is finite, where π' is the natural projection of H onto T. Moreover, if L/Z(L) is homeomorphic to Euclidean space, then Z(L) = Z(H).
- (5) Each bicontinuous automorphism σ of L can be extended to a bicontinuous automorphism $\epsilon'(\sigma)$ of H, such that $\epsilon': A(L) \to A(H)$ is a closed imbedding.

Let $j: K \times L \to K \times H$ be the dense imbedding induced by the dense imbedding of L into H. Then since D is central in L, and since the center of L is contained in M by (*), we see that $j(\tilde{D})$ will be a discrete central subgroup of $K \times H$. We have $G \cong (K \times L)/\tilde{D}$ and we let $(K \times L)/\tilde{D} \to (K \times H)/\tilde{D}$ be the dense imbedding induced by j, where we have identified \tilde{D} and $j(\tilde{D})$. Let

$$P = (K \times H)/\tilde{D} = (K \times (M \otimes T))/\tilde{D}.$$

Because $\{k\tilde{D}: k \in K\} \cdot \{h\tilde{D}: h \in H\}$ is a canonical decomposition of P, with $H \to \{h\tilde{D}: h \in H\}$ being a continuous isomorphism onto, we see from Lemma 2.1 that P is a (C A) locally compact connected group.

Since D is contained in M, we see that \tilde{D} is contained in $K \times M$. Consider ω : $T \to A((K \times M)/\tilde{D})$, where $\omega(\tau)(k,m)\tilde{D} = (k,\tau(m))\tilde{D}$. ω is a well-defined imbedding, since each $\tau \in T$ keeps the center of L elementwise fixed. Now consider $((K \times M)/\tilde{D}) \otimes T$ and let

$$\Delta: (K \times (M \circledast T))/\tilde{D} \to ((K \times M)/\tilde{D}) \circledast T,$$

where $\Delta((k,(m,\tau))\tilde{D}) = ((k,m)\tilde{D},\tau)$. Δ is a well-defined bicontinuous isomorphism onto $((K \times M)/\tilde{D}) \otimes T$. Hence,

$$P \cong ((K \times M)/\tilde{D}) \otimes T$$
 and $G \cong ((K \times M)/\tilde{D}) \otimes V$.

We let $N = (K \times M)/\tilde{D}$. Since M is (C A) from (*), we have that N is (C A) from Lemma 2.1.

Since M is connected and D is discrete, it is easy to see that

$$Z(G) = (Z(K) \times Z(L))/\tilde{D} \cong \{((k, m)\tilde{D}, e): k \in Z(K), m \in Z(L)\},\$$

which is contained in N. In the same way we see that

$$Z(P) = \{((k,m)\tilde{D},\tau): k \in Z(K), (m,\tau) \in Z(H)\}.$$

Now let π denote the natural projection of P onto T. Since there are only finitely many $\tau \in T$ such that $(m,\tau) \in Z(H)$ from (*), it is clear that $\pi(Z(P))$ is finite.

If $((k,m)\tilde{D},\tau)$ is in $Z_0(P)$, then, since $\pi(Z_0(P))$ is both connected and finite, $Z_0(P)$ is contained in N. Hence, $Z_0(G) = Z_0(P)$ because G is dense in P.

Suppose that G/Z(G) is homeomorphic to Euclidean space. Since

$$G/Z(G) \cong ((K \times L)/\tilde{D})/((Z(K) \times Z(L))/\tilde{D}) \cong (K/Z(K)) \times (L/Z(L)),$$

we see that L/Z(L) is homeomorphic to Euclidean space. Therefore, Z(L) = Z(H) from (*). Hence, Z(G) = Z(P). This completes the proof of our theorem.

LEMMA 2.2. Maintaining the notation in the statement and proof of Theorem 2.1, we have that $\rho_G \colon T \to A(G)$ is one-to-one and $\rho_G(P) = \overline{(I(G))}$.

PROOF. We first show that $I_G(N)$ is closed in A(G). To this end let $A_D(L)$ denote the identity component group of the subgroup of A(L) composed of elements which leave every element of D fixed. $A_D(L)$ is a closed analytic subgroup of A(L) by Goto [1]. Clearly $I_L(M)$ is contained in $A_D(L)$. Moreover, we may appeal to the proof of Theorem 2.1 in Zerling [5] to see that $I_L(M)$ is actually closed in $A_D(L)$.

Let $f: A_D(L) \to A(G)$ be given by $f(\sigma)((k, 1)\tilde{D}) = (k, \sigma(1))\tilde{D}$.

Again from Goto [1] we have that f is a bicontinuous isomorphism into A(G). Therefore, $f(A_D(L))$ is locally compact and so it is closed in A(G).

Since direct computation shows that $I_G((k,m)\tilde{D}) = I_G(k) \cdot f(I_L(m))$, $k \in K$, $m \in M$, we have $I_G(K) \cdot f(I_L(M)) = I_G(N)$. Since $I_L(M)$ is closed in $A_D(L)$, and f is a bicontinuous isomorphism into A(G), and $f(A_D(L))$ is closed in A(G), we see that $I_G(N)$ is closed in A(G).

 ρ_G is one-to-one on T because $\tau(n,v)\tau^{-1}=(\tau(n),v)$ for $n\in N,v\in V,\tau\in T$.

Now $\rho_G(P) = \rho_G(N) \cdot \rho_G(T) = I_G(N) \cdot \overline{I_G(V)}$. Since $\underline{I_G(N)}$ is closed in A(G) and $\overline{I_G(V)}$ is compact, we see that $\overline{I(G)} = I_G(N) \cdot \overline{I_G(V)} = \rho_G(P)$.

THEOREM 2.2. Maintaining the notation in the statement and proof of Theorem 2.1, we have that each bicontinuous automorphism σ of G can be extended to a bicontinuous automorphism $\epsilon(\sigma)$ of P. Moreover, if Z(K) is totally disconnected, then $\epsilon\colon A_0(G)\to A_0(P)$ is a bicontinuous isomorphism onto a closed subgroup of A(P).

PROOF. We have

$$G = NV \cong N \circledast \rho_N(V)$$
 and $P = N \circledast \overline{\rho_N(V)}$.

Let σ be a bicontinuous automorphism of G. Then

$$G = \sigma(N) \cdot \sigma(V) \cong \sigma(N) \otimes \rho_{\sigma(N)}(\sigma(V)).$$

Since $\rho_G(P) = \overline{I(G)}$ from Lemma 2.2, we can construct the continuous homomorphism $\Psi: T \to \rho_G(P)$, where

(1)
$$\Psi(\tau) = \sigma \circ \rho_G(\tau) \circ \sigma^{-1}.$$

It is clear that Ψ is a bicontinuous isomorphism of T onto a compact subgroup of $\rho_G(P)$.

From (1) we have

(2)
$$\Psi(\rho_N(v)) = \rho_G(\rho_{\sigma(N)}(\sigma(v))), \qquad v \in V.$$

Let $\operatorname{Cl}_P(\rho_{\sigma(N)}(\sigma(V)))$ denote the closure of $\rho_{\sigma(N)}(\sigma(V))$ in P. We see from (2)

that the restriction of ρ_G to $\operatorname{Cl}_P(\rho_{\sigma(N)}(\sigma(V)))$ is one-to-one. We also see from (1) and (2) that

(3)
$$\rho_G(\rho_{\sigma(N)}(\sigma(V))) \subset \Psi(T) \subset \operatorname{Cl}_{A(G)}(\rho_G(\rho_{\sigma(N)}(\sigma(V)))).$$

Since $\Psi(T)$ is compact, we see from (3) that

$$\Psi(T) = \operatorname{Cl}_{A(G)}(\rho_G(\rho_{\sigma(N)}(\sigma(V)))).$$

We now wish to show that $\operatorname{Cl}_P(\rho_{\sigma(N)}(\sigma(V)))$ is a toral group; for once we know this we can conclude that

(4)
$$\Psi(T) = \rho_G(\operatorname{Cl}_P(\rho_{\sigma(N)}(\sigma(V)))).$$

To this end we let $A_0(N)$ and $A_0(\sigma(N))$ denote the identity component groups of A(N) and $A(\sigma(N))$, respectively. Let

$$F: N \otimes A_0(N) \to \sigma(N) \otimes A_0(\sigma(N))$$

be defined by $F(n,\alpha) = (\sigma(n),\alpha')$, where $\alpha'(\sigma(\overline{n})) = \sigma(\alpha(\overline{n}))$, $\overline{n} \in \mathbb{N}$. F is a bicontinuous isomorphism onto, and

$$F(P) = N \circledast \operatorname{Cl}_{A(N)}(\rho_N(V)) = \sigma(N) \circledast \operatorname{Cl}_{A(\sigma(N))}(\rho_{\sigma(N)}(\sigma(V))),$$

$$F(\operatorname{Cl}_{A(N)}(\rho_N(V))) = \operatorname{Cl}_{A(\sigma(N))}(\rho_{\sigma(N)}(\sigma(V))),$$

$$F(\rho_N(V)) = \rho_{\sigma(N)}(\sigma(V)).$$

Therefore.

$$\operatorname{Cl}_{P}(\rho_{\sigma(N)}(\sigma(V))) = \operatorname{Cl}_{P}(F(\rho_{N}(V)))$$
$$= F(\operatorname{Cl}_{P}(\rho_{N}(V))) = F(\operatorname{Cl}_{A(N)}(\rho_{N}(V))),$$

where we have identified P and F(P). Since $T = \operatorname{Cl}_{A(N)}(\rho_N(V))$ is a toral group, we see that $\operatorname{Cl}_P(\rho_{\sigma(N)}(\sigma(V)))$ is a toral group. Therefore, (4) is true.

Now let Φ denote the inverse of the bicontinuous isomorphism ρ_G from $\text{Cl}_P(\rho_{\sigma(N)}(\sigma(V)))$ onto $\Psi(T)$. Define $\epsilon(\sigma)$: $P \to P$ as follows:

(5)
$$\epsilon(\sigma)(n,\tau) = \sigma(n) \cdot (\Phi \circ \Psi)(\tau).$$

First of all, $(\Phi \circ \Psi)(\rho_N(v)) = \Phi(\rho_G(\rho_{\sigma(N)}(\sigma(v))))$, from (2). But $\Phi(\rho_G(\rho_{\sigma(N)}(\sigma(v)))) = \rho_{\sigma(N)}(\sigma(v)) = \rho_{\sigma(N)}(\sigma(v))$ from the definition of Φ . However, $\rho_{\sigma(N)}(\sigma(v)) = \sigma(\rho_N(v))$ under the identifications $v \leftrightarrow \rho_N(v)$ and $\sigma(v) \leftrightarrow \rho_{\sigma(N)}(\sigma(v))$. Therefore, from (5) we see that $\epsilon(\sigma)(g) = \sigma(g)$ for all g in G. Since G is dense in P, we also see that $\epsilon(\sigma) \in A(P)$.

Now suppose that Z(K) is totally disconnected (which would certainly be the case if Z(G) were totally disconnected). Let $A_D(H)$ be the identity component group of the group of bicontinuous automorphisms of H which leave D elementwise fixed. Let $f': A_D(H) \to A(P)$ be defined by $f'(\delta)(k,h)\tilde{D} = (k,\delta(h))\tilde{D}$. Then from Goto [1] we have

$$A_0(G) = I_G(K_0) \times f(A_D(L)),$$

 $A_0(P) = I_P(K_0) \times f'(A_D(H)),$

and

$$I_G(K_0) \cong I_K(K_0) \cong I_P(K_0).$$

Now consider the following diagram:

$$A_D(L) \stackrel{\epsilon'}{\longrightarrow} A_D(H)$$

$$\downarrow^f \qquad \qquad \downarrow^{f'}$$

$$f(A_D(L)) \stackrel{\epsilon}{\longrightarrow} f'(A_D(H)).$$

For $\delta \in A_D(L)$ we see from the definitions that $(f' \circ \epsilon')(\delta)$ and $(\epsilon \circ f)(\delta)$ agree on G. Hence, they agree on F. Therefore, the diagram commutes. Thus, $\epsilon \colon A_0(G) \to A(F)$ is continuous. We have now completed the proof of our main theorem.

THEOREM 2.3. Let G be a (CA) locally compact connected group and let N and H be a closed normal connected subgroup and a closed connected subgroup of G, respectively, such that G = NH, $N \cap H = \{e\}$. Let $N = KL^*$ be a canonical decomposition of N, and suppose that Z(K) is totally disconnected. Let π denote the natural projection of G onto H.

- (i) If $\pi(Z(G))$ is discrete, then N is (CA).
- (ii) If $\pi(Z(G))$ is closed and N/Z(N) is homeomorphic to Euclidean space, then N is (CA).

PROOF. Suppose that N is non-(C A). Let N' be a (CA) locally compact connected group such that $N \to N'$ is a dense imbedding, where N' is to be constructed according to the method in Theorem 2.1. Let $\epsilon \colon A_0(N) \to A_0(N')$ be the continuous extension homomorphism constructed in Theorem 2.2. Let $\beta = \epsilon \circ \rho_N$. Then the restriction of β to H is a continuous homomorphism of H into A(N'), and we let G' denote the semidirect product of N' and H that is determined by β . Then $G \to G'$ is a dense imbedding.

Let $\{(n_v, h_v)\}$ be a net of central elements in G converging in G' to (n', h).

Case (i). In this case we can find some μ such that for $\nu \ge \mu$ we have $h_{\nu} = h$. Therefore, $n_{\nu} n_{\mu}^{-1} = (n_{\nu}, h)(n_{\mu}, h)^{-1}$ is in $Z(G) \cap N$ for $\nu \ge \mu$. Since the center of N is closed in N' by Theorem 2.1, and since $\rho_N(H)$ keeps each $n_{\nu} n_{\mu}^{-1}$ fixed $(\nu \ge \mu)$, we see that $n' n_{\mu}^{-1}$ is in the center of N and is held fixed by $\rho_N(H)$. Hence, $n' n_{\mu}^{-1} \in Z(G)$. Therefore, $(n', h) = z \cdot (n_{\mu}, h)$, $z \in Z(G)$. So the center of G is closed in G'. Since G is (CA), we can appeal to Goto [2, Proposition 9] to conclude that G = G'. Therefore, N is (CA).

Case (ii). In this case, since $\pi(Z(G))$ is closed in H, there exists an element \overline{n} in N so that (\overline{n}, h) is in Z(G). Since $n'\overline{n}^{-1} = (n', h) \cdot (\overline{n}, h)^{-1}$, we see that $n'\overline{n}^{-1} \in (\text{center of } G') \cap N'$. Therefore, $n'\overline{n}^{-1}$ is in the center of N'. Since N/Z(N) is homeomorphic to Euclidean space, N and N' have the same center by Theorem 2.1. Thus, $n'\overline{n}^{-1}$ is in the center of N. Therefore, since $n'\overline{n}^{-1}$ is already in the center of G', it follows that $n'\overline{n}^{-1} \in Z(G)$. So $(n', h) = z \cdot (\overline{n}, h)$, $z \in Z(G)$. As in case (i) above, we can conclude that N is (CA).

BIBLIOGRAPHY

- 1. M. Goto, On the group of automorphisms of a locally compact connected group, Mem. Amer. Math. Soc. No. 14 (1955), 23-29. MR 16, 997.
- 2. —, Dense imbeddings of locally compact connected groups, Ann of Math. (2) 61 (1955), 154-169. MR 16, 447.
- 3. H. Yamabe, On the conjecture of Iwasawa and Gleason, Ann. of Math. (2) 58 (1953), 48-54. MR 14, 948.
- **4.** —, A generalization of a theorem of Gleason, Ann. of Math. (2) **58** (1953), 351-365. MR **15**, 398.
- 5. D. Zerling, Some theorems on (CA) analytic groups, Trans. Amer. Math. Soc. 205 (1975), 181-192.

DEPARTMENT OF MATHEMATICS, PHILADELPHIA COLLEGE OF TEXTILES AND SCIENCE, PHILADELPHIA, PENNSYLVANIA 19144