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ON GOING-DOWN FOR SIMPLE OVERRINGS. Ill

DAVID E. DOBBS1 AND IRA J. PAPICK

Abstract.

Theorem 1. Let R be an integral domain with quotient field K. The following

three conditions are equivalent:

(a) R C R[u] satisfies going-down (GD) for each u in K;

(b) R C V satisfies GD for each valuation overring V of R;

(c) R C S satisfies GD for each domain S containing R.

If (d) is the condition obtained by restricting the domains S in (c) to be

overrings of R, then (a) «* (d) has been proved in case R is Krull or integrally

closed finite-conductor (e.g., pseudo-Bezout) or Noetherian.

Theorem 2. Let R C T be domains such that either Spec(R) or Spec(r), as

a poset under inclusion, is a tree. If R C R[u, v] satisfies GD for each u and v in

T, then R C T satisfies GD.

1. Introduction. Throughout this note, let R be an integral domain with

quotient field K. Our main purpose is to prove

Theorem 1.    The following three conditions on R are equivalent:

(a) R C R[u] satisfies going-down (GD) for each u in K.

(b) R C V satisfies GD for each valuation overring V of R.

(c) R C T satisfies GD for each integral domain T containing R.

If (d) is the condition on R obtained by restricting the rings P in condition

(c) to be overrings of R, then the equivalence (a) «=> (d) has already been

established in case R is: Krull [4, Corollary 10]; GCD (pseudo-Bezout) [3,

Corollary 4.3]; more generally, integrally closed finite-conductor [4, Corollary

4]; or Noetherian [5, Corollary 2.3]. Further evidence suggesting the validity

of (a) <=* (d) was provided by: McAdam [12, Proposition 2], [10, Theorem 1],

whose work yields the analogue of (a) <=> (c) in which all the relevant

extensions are assumed integral; and the first-named author [5, Proposition

3.5], who showed that (a) holds for each overring of R if and only if the same

is true of (d).

As in [5], if R satisfies (d), we say that R is a going-down ring (and write: R

is GD). Inasmuch as (c) => (d) => (b) trivially, Theorem 1 implies the

equivalence of the four conditions. Thus, to use more terminology from [5],

Theorem 1 shows: R is SGD ** R is GD. Examples of going-down rings are

Priifer domains, arbitrary integral domains of Krull dimension 1, and the rings

constructed by iterated restrained power series in [5, Corollary 4.4].

Any unexplained terminology is standard, as in [6] and [8].
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2. Proofs. We start with a result which serves both to motivate Theorem 2

and to dispatch the difficult implication in Theorem 1. First, recall from [5]

that a commutative ring A is said to be treed in case Spec(/1), as a poset under

inclusion, is a tree, i.e. in case no maximal ideal of A contains incomparable

primes.

Proposition. Let T be a quasilocal treed integral domain containing R. If

R C R[u] satisfies GD for each u in T, then RET satisfies GD.

Proof. Deny the result. By [8, Exercise 37 (i) => (ii), p. 44], there exist P in

Spec(A) and N in Spec(7^) such that N is minimal amongst primes of T

containing PT and An A ^ P. As T is quasilocal treed, A' is the radical of

PT. Thus, choosing r in (N n A)\A leads to an equation rm = 2 />, w, for

some Pi in P, wt in T, and m > 1.

Now, the primes of T are linearly ordered by inclusion and, by a result of

Prekowitz [9, p. 29], we may relabel the />■ so that, for each i, px divides a power

of Pi (with quotient in T). Raising the above equation to a suitably high power,

say the rth, gives an element w in T such that rml = px w.

An application of [8, Theorem 10] produces Nx, minimal amongst primes of

R[w] contained in N n R[w] and containing 7>/?[w]. Since A C R[w] satisfies

GD, [8, Exercise 37 (ii) => (i), p. 44] shows that A, n A = P, whence r is in

P. This contradiction completes the proof.

Proof of Theorem 1. [5, Proposition 3.2] shows (b) => (a), and (c) => (b)

trivially.

Finally, assume (a), let T be an integral domain containing A, let P C M be

primes of A, and let A be a prime of T contracting to M. By [8, Theorem 56],

T is contained in a valuation domain W whose maximal ideal contracts to N.

Let V = W n A. Then V is a valuation ring (of A), hence Priifer, so that

W is K-flat and, by [7, Corollaire 3.9.4(h), p. 254], V E W satisfies GD.
However, since V is quasilocal treed, the above Proposition shows that REV

satisfies GD and, as GD is transitive, R E W also satisfies GD. We thus

obtain a prime Q of W contracting to P, so that Q C\ Ti% contained in N and

also contracts to P. Thus, (a) => (c), and the proof is complete.

The next result generalizes [5, Proposition 4.1 (iii)].

Corollary. Let V be a valuation domain of the form F + M, where F is a

field and M is the maximal ideal of V. Let T be a subring of F. Then T is GD if

and only if T + M is GD.

Proof. It will be convenient to use criterion (d) of the introduction in

testing for going-down rings. By [1, Theorem 3.1], the overrings of T + M are

of two types: rings S + M arising from 7-subalgebras S of F, and overrings of

V. Since V is GD, the now-familiar transitivity argument shows that T + M is

GD if and only HT+MES + M satisfies GD for each T-subalgebra S of

F. The description of primes in rings of the form * + M [6, Theorem A(c), (d),

(e), p. 560] readily implies that, for A as above, T + M E S + M satisfies GD

if and only if T E S satisfies GD. Thus, T + M is GD if and only if T C S
satisfies GD for each T E S E F. By Theorem 1 (more precisely, since (d) =>

(c) and F contains all the overrings of T), the latter condition is equivalent to

T being GD, and the proof is complete.
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Remark 1. We pause to note some earlier instances of the technicalities in

the proof of the above Proposition. Apropos of Prekowitz' result, McAdam

observed in line 4 of the proof of [11, Theorem 1] that any pair of radical

ideals in a quasilocal treed domain are comparable. Our combinatorial

argument reducing a high power of a sum in a quasilocal treed domain to a

single term is put to other use in a proof of Wadsworth [9, p. 30].

The phrasing of the Proposition places that result in a growing class of

statements (cf. [12, Proposition 2] and [10, Theorem 1], mentioned earlier) of

the kind: "R C P satisfies GD, if fi C 5 satisfies GD for certain fi-algebras

5 of finite type ". A result of this kind is given next for arbitrary treed R or P.

Theorem 2. Let T be an integral domain containing R such that either R or

T is treed. If R C R[u, v] satisfies GD for each pair of elements u, v in T, then

R C T satisfies GD.

Proof. Deny the result. The characterization of "going-down to P" in [8,

Exercise 37(iii), p. 44] then supplies a prime P of fi and Q, minimal amongst

primes of Pcontaining PT, such that PT n (R\P)(T\Q) ¥= 0. This produc-

es an equation 2 Piwi = rv I0r some/?, in P, wt in P, r in R\P, and v in T\Q.

Suppose R is treed. Then the primes of RP are linearly ordered by inclusion,

so that the above-cited result of Prekowitz permits a relabelling such that px

divides powers of each pt, with quotients in RP. Taking a sufficiently high

power (the tth) of the above equation has as upshot an equation pxwz~x

= r'v' for some w in P and z in R\P. We thus have pw = bu, with p = px in

P, w in P, b = r'z in R\P, and u = v' in T\Q. If P is treed, we argue

similarly, obtaining quotients in Tq instead of RP, and again find an equation

of the form pw = bu.

After lowering Q D R[w, u] to a prime minimal over PR[w, u], this equation

violates the characterization in [8, Exercise 37(iii), p. 44] of going-down (to P)

for R C R[w, u], which completes the proof.

Remark 2. If 9 is a property which may be satisfied by extensions of

commutative rings, let (a9), ..., (<Lp) be the statements obtained from (a),

(d) in the introduction by replacing "GD" with "9". Thus, Theorem 1 asserts

the equivalence of (a9), ..., (d9) in case 9 = GD. The corresponding

equivalences for <eP' = flat also hold (cf. [5, Proposition 3.1]), and characterize

Priifer domains. Let 9 be given by: A9B if and only if Spec(fi) —> Spec(/0 is

open. Since <3" => GD and 9 => GD [7, Corollaire 3.9.4(h) and (i), p. 254], it is

worth noting that (a#) ^ (d6). Indeed, as shown in [13], it follows easily from

[14, Corollaire 2, p. 42] that any Priifer R satisfies (a#), while compactness of

Spec (R) [2, Proposition 12, p. 128] shows that any R satisfying (de) must be

quasisemilocal. Proofs of the equivalences (b#) <=> (c#) <=> (d#) and a charac-

terization of rings satisfying (de) will appear in [13].
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