ANY UNITARY PRINCIPAL SERIES REPRESENTATION OF GL_n OVER A p-ADIC FIELD IS IRREDUCIBLE

ROGER HOWE AND ALLAN SILBERGER 1

ABSTRACT. This paper proves that for the group GL_n over the *p*-adics every unitary principal series representation is irreducible.

We have an application [3] for the titled fact. Since we were unable to find any proof in the literature, we are presenting two here.

Let F be a nonarchimedean local field and let $G = \operatorname{GL}_n(F)$. Let D be the diagonal subgroup of G and U the upper unipotent matrices. Let $B = D \cdot U$ be the group of all nonsingular upper triangular matrices and write δ for the modular function of B. (If $d_l b$ is a left Haar measure for B, then $\delta(b)d_l b$ is a right Haar measure.) Let K be a maximal compact subgroup of G and recall that G = KB.

Let χ be any (unitary) character of D and regard it as a character of B. The induced representation $\pi_{\chi} = \operatorname{Ind}_B^G(\chi \delta^{1/2})$ is called the (unitary) principal series representation attached to χ . To describe the unitary representation π_{χ} explicitly, we let \mathfrak{X}_{χ} denote the Hilbert space of all complex-valued measurable functions h on G such that $h(gb) = \chi^{-1}(b)\delta^{-1/2}(b)h(g)$ ($g \in G$, $b \in B$) and such that $\int_K |h(k)|^2 dk < \infty$. Then π_{χ} is just left translation in \mathfrak{X}_{χ} : $(\pi_{\chi}(x)h)(g) = h(x^{-1}g)$ ($h \in \mathfrak{X}_{\chi}$; $g, x \in G$).

The Theorem we wish to prove twice is:

THEOREM. π_{\vee} is irreducible.

Our first proof is essentially folklore, and depends on results of Mackey.

PROOF. (1). Let P be the subgroup of G which consists of all matrices with zero entries in the top row except in the first place. Then $P \cdot B$ is a dense open subset of G whose complement has Haar measure zero. The Mackey subgroup theorem [4], therefore, implies that $\pi_{\chi} \mid P = \operatorname{Ind}_{B \cap P}^{P}(\chi \delta^{1/2})$. Write N for the unipotent radical of P and note that $(B \cap P) \cdot N = H$ is a closed solvable subgroup of P. Inducing in stages, we obtain $\pi_{\chi} \mid P = \operatorname{Ind}_{H}^{P}(\operatorname{Ind}_{B \cap P}^{H}(\chi \delta^{1/2}))$. First, observe that $(\operatorname{Ind}_{B \cap P}^{H}(\chi \delta^{1/2})) \mid N$ is the regular representation of N.

First, observe that $(\operatorname{Ind}_{B\cap P}^H(\chi\delta^{1/2}))|N$ is the regular representation of N. Next, letting \hat{N} denote the Pontrjagin dual of the abelian group N and noting that N is a normal subgroup of P, we obtain an action Ad^* of P on \hat{N} . The restricted action $\operatorname{Ad}^*|B\cap P$ has an open dense orbit $\mathfrak{A}\subset \hat{N}$ and the measure of $\hat{N}-\mathfrak{A}$ is zero. Let $\eta\in\mathfrak{A}$ and let C (resp. Q) be the isotropy

Received by the editors November 11, 1974.

AMS (MOS) subject classifications (1970). Primary 22E50; Secondary 22E35.

Key words and phrases. Principal series, unitary representation, irreducibility, p-adic group.

¹ The authors would like to thank the Sonderforschungsbereich "Theoretische Mathematik" at the University of Bonn for supporting this research.

subgroup of η in H(resp. P). Of course, $N\subseteq C\subseteq Q$. There is a unique extension of η to C which agrees with $\chi\delta^{1/2}$ on $C\cap B$. Call this extension $\phi\delta^{1/2}$. It is easy to see that $\operatorname{Ind}_C^H(\phi\delta^{1/2}) \sim \operatorname{Ind}_{B\cap P}^H(\chi\delta^{1/2})$. Thus, $\pi_\chi|P$ $\sim \operatorname{Ind}_Q^P(\operatorname{Ind}_C^Q(\phi\delta^{1/2}))$, and by Mackey's irreduciblity criterion [4], $\pi_\chi|P$ is irreducible if and only if $\operatorname{Ind}_Q^Q(\phi\delta^{1/2})$ is irreducible.

To check this irreducibility let \tilde{Q} be a complement to N in Q, so that $Q = \tilde{Q} \times N$ (semidirect product). Put $\tilde{C} = C \cap \tilde{Q}$ and $\tilde{\phi} = \phi | \tilde{C}$. Then $\operatorname{Ind}_{\tilde{C}}^{Q}(\phi \delta^{1/2}) | \tilde{Q} = \operatorname{Ind}_{\tilde{C}}^{\tilde{Q}}(\tilde{\phi} \delta^{1/2})$ and, as one sees, the irreducibility of this last representation is our Theorem for GL_{n-1} instead of $\operatorname{GL}_n = G$. To complete the proof apply mathematical induction.

Note that we have, in fact, established that $\pi_{\chi}|P$ is irreducible. An easy proof for the case n=2 results from appropriately simplifying the above argument.

Our second proof depends upon a deep result of Harish-Chandra and the fact that our Theorem is known to be true for GL₂.

PROOF. (2). For PGL₂ the Theorem is proved in [6, Theorem 3.4] by a simple computation; the case of GL₂ is not different. A proof for GL₂ which is more in the spirit of what will follow results from observing that if χ , regarded as a character of the diagonal group D, is fixed by the Weyl group, then (for GL₂!) the Plancherel measure is zero at χ [5], [6]. This implies that π_{χ} is irreducible [2, Corollary 5.4.2.3].

Now let $n \ge 3$. The theorem of Harish-Chandra which we shall use is too complicated to explain in detail here, so we give a simplified version. We set $\omega = \chi$ and P = B and obtain a space $L(\chi, B)$ as defined in [1, §11]. We also need the operators ${}^{\circ}c_{B|B}(s:\chi:0)$ (cf. ibid.). Let $W(\chi)$ be the subgroup of the Weyl group $W = N_G(D)/Z_G(D)$ such that $\chi^s = \chi$. Harish-Chandra's theorem [2, Theorem 5.5.3.3] implies that: There is a representation

$$s \mapsto^{\circ} C_{B|B}(s:\chi:0)$$

of $W(\chi)$ on $L(\chi, B)$ which is trivial if and only if π_{χ} is irreducible.

Observe that $W(\chi)$ is always (in the case of $GL_n!$) generated by reflections corresponding to reduced roots of G. Without loss of generality, we may in fact assume that these reduced roots are simple. Thus, it suffices to show that ${}^{\circ}c_{B|B}(s:\chi:0)$ is the identity when s is a reflection in $W(\chi)$ with respect to a fixed simple root.

Let D' be the maximal subtorus of D which is fixed by s. There is a maximal parabolic subgroup P' = M'N' of G, where $M' = Z_G(D')$ is isomorphic to a product of GL_m 's (m < n), N' is the unipotent radical of P', and $P' \supset B$. The group $^*B = M' \cap B$ is a Borel subgroup of M', i.e. it is concretely a product of upper triangular subgroups. The space $L(\chi,^*B) \supset L(\chi,B)$. We need the following fact [2, Theorem 5.3.5.3]:

$${}^{\circ}c_{B|B}(s:\chi:0) = {}^{\circ}c_{*B|*B}(s:\chi:0)|_{L(\chi,B)}.$$

But now the proof is finished, because $\operatorname{Ind}_{*B}^{M'}(\delta_{*B}^{\vee_2}\chi)=\pi'_{\chi}$ is a representation of the principal series of M', so it is equivalent to a tensor product of principal series representations of GL_m 's (m < n); thus π'_{χ} is irreducible. Therefore, ${}^{\circ}C_{*B|^*B}(s:\chi:0)$ is already the identity on $L(\chi,^*B)$.

REFERENCES

- 1. Harish-Chandra, *Harmonic analysis on reductive p-adic groups*, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1974, pp. 167—192.
 - 2. —, Notes on lectures at the Institute for Advanced Study, 1971-1973 (to appear).
- 3. R. Howe and A. Silberger, Why any unitary principal series representation of SL_n over a padic field decomposes simply, Bull. Amer. Math. Soc. 81 (1975), 599—601.
- 4. G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265—311. MR 20 #4789.
- 5. F. I. Mautner, Spherical functions over \(\partial^2\)-adic fields. I, II, Amer. J. Math. 80 (1958), 441—457; ibid, 86 (1964), 171—200. MR 20 #82; 29 #3582.
- 6. A. J. Silberger, PGL₂ over the p-adics: its representations, spherical functions, and Fourier analysis, Lecture Notes in Math., vol. 166, Springer-Verlag, Berlin and New York, 1970. MR 44 #2891.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11794

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MASSACHUSETTS 01002

Current address (Roger Howe): Department of Mathematics, Yale University, New Haven, Connecticut 06520

Current address (Allan Silberger): Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115