COUNTABLY GENERATED FAMILIES

R. DANIEL MAULDIN

ABSTRACT. This paper discusses some interrelationships between various statements involving sets generated by rectangles, universal spaces, and real-valued measures on the continuum. Borel sets on ordinal spaces are also discussed.

Definition. Let E denote a set. If A is a subset of $E^2 = E \times E$, let $A_x = \{y | (x, y) \in A\}$, for each x in E and let $A^y = \{x | (x, y) \in A\}$, for each y in E. Let R be the family of all sets of the form $A \times B$ in E^2 .

If G is a subset of 2^E , let G_0 be G and for each ordinal α , let G_α be the family of all countable unions (intersections) of sets in $\bigcup_{\gamma < \alpha} G_{\gamma'}$ if α is odd (even). Limit ordinals will be considered even. Of course, G_{ω_1} is the smallest family including G which is closed under countable unions and intersections; G_{ω_1} is the Borel lattice generated by G. It can be checked that if for each $A \in G$, $A' \in G_{\omega_1}$, then G_{ω_1} is closed under complements and G_{ω_1} is then the σ -algebra or Borel algebra generated by G.

In [1], a study is made of the Borel lattice (algebra) generated by the family R and a number of the results stated in that paper will be used here. In particular, if |E| > c, then the main diagonal in $E \times E$ is not in R_{ω_1} . If $|E| \le \omega_1$, then $2^{E^2} = R_{\omega_1} = R_{\sigma\delta}$. (It should be noted that throughout this paper, the Axiom of Choice is assumed and cardinals are regarded as initial ordinals.)

Kunen [4] investigated the family R_{ω_1} when $|E| \le c$. He showed that Martin's Axiom implies $R_{\sigma\delta} = 2^{E^2}$, if $|E| \le c$.

Recently, Franklin Tall and Kenneth Kunen have constructed a model of ZFC in which Martin's Axiom fails and yet $2^{E^2} = R_{\omega_1}$, if $|E| \le c$. R. Mansfield [18] and B. V. Rao [19], [20] have also studied the sets generated by rectangles and have solved some of Ulam's problems with their aid.

There are a number of interesting consequences which follow from the assumption that $2^{E^2} = R_{\omega_1}$ and from the techniques which have been used in the study of families generated by R.

Results.

THEOREM 1. Suppose $2^{E^2} = R_{o\delta}$, where |E| = c, and if $\lambda < c$, then $2^{\lambda} \le c$. Then there is a subset M of [0,1] such that the Banach space $B_1(M)$ consisting of the bounded real-valued functions of Baire's class 1 defined on M and under the uniform norm is universal for all Banach spaces of cardinality c.

Received by the editors November 15, 1974.

AMS (MOS) subject classifications (1970). Primary 04A15, 04A30; Secondary 28A05.

Key words and phrases. Rectangles, continuum hypothesis, Martin's Axiom, universal space, measurable cardinal, ray of ordinals, Borel sets.

PROOF. It is known that the condition $\lambda < c$ implies $2^{\lambda} \le c$ is equivalent to $c = c^{\mathcal{C}}$. It is known that $c = c^{\mathcal{C}}$ implies there is a zero-dimensional compact T_2 space U of weight c such that if Y is a compact T_2 space weight c, then Y is a continuous image of U [16], [17, p. 131]. If X is a Banach space and |X| = c, then X can be embedded in a space C(S) where S is a compact T_2 space and |C(S)| = c. But if $|C(S)| \le c$, then weight of S is S is S is a compact S can be embedded in S ince S is a compact S is a compa

Question. Does the existence of a universal Banach space of cardinality c imply $c = c^{C}$ or that there is a compact T_2 space, U, of weight c so that every compact T_2 space of weight c is a continuous image of U?

There are a number of other consequences of the assumption that $R_2 = R_{\sigma\delta}$ = 2^{E^2} by itself or together with a cardinality condition. For example, if $2^{\aleph_1} = 2^{\aleph_0}$ and $R_2 = 2^{E^2}$, then there exists a *Q*-set [7, Theorem 4.5].

 $2^{\aleph_1} = 2^{\aleph_0}$ and $R_2 = 2^{E^2}$, then there exists a Q-set [7, Theorem 4.5]. In [4], Kunen showed that $R_{\omega_1} = 2^{E^2}$ implied that |E| is not a real-valued measurable cardinal. As Kunen points out, his argument is a variant of the known fact that a well-ordering of the real numbers is not Lebesgue measurable [11]. We shall generalize this argument as follows:

THEOREM 2. Let |E| = c. For each positive integer i, statement i implies statement i + (1).

- 1. $2^{\aleph_0} = \aleph_1$;
- 2. Martin's Axiom;
- 3. $2^{E^2} = R_2 = R_{\sigma\delta}$;
- 4. $2^{E^2} = R_{\omega_1}^2$;
- 5. there is a countable ordinal α such that if H is a family of c subsets of E, then there is a countable family G of subsets of E such that $H \subseteq G_{\alpha}$;
- 6. there is a countable ordinal α such that if H is a family of c subsets of E and each member of H has cardinality < c, then there is a countable family G such that $H \subseteq G_{\alpha}$;
- 7. if H is a family of c subsets of E and each member of H has cardinality < c, then there is a countable family G such that H is a subcollection of the Borel algebra generated by G;
- 8. if W is a subset of E^2 , then W is the union of a subfamily G of R_{ω_1} such that the cardinality of G is not real-valued measurable;
 - 9. if κ is a real-valued measurable cardinal, then $\kappa > c$.

PROOF. For the first three implications, see Kunen [4]. As has been mentioned, $3 \rightarrow 2$. Clearly $3 \rightarrow 4$, and in [1] it is shown that $4 \rightarrow 5$. The question "Does $4 \rightarrow 3$?" was raised in [1]. Clearly $5 \rightarrow 6$.

We shall now show that $6 \rightarrow 4$.

Let E be well ordered into an initial type; $E = \{x_1, x_2, \dots, x_{\alpha}, \dots | \alpha < c\}$. Let $A = \{(x_{\alpha}, x_{\gamma}) | \alpha < \gamma\}$ and let $B = E^2 - A$. For each $y, |A^y| < c$ and for each $x, |B_x| < c$.

Let $Z \subseteq E^2$. Then $Z = (Z \cap A) \cup (Z \cap B)$. Let $H = \{(Z \cap A)^y | y \in E\}$. Each member of H has cardinality < c. Thus, if 6 holds, there is a countable family of G of subsets of E and a countable ordinal G such that $H \subseteq G_{\alpha}$. It follows directly from Theorem 3 of [1] that $Z \cap A \in R_{\omega_1}$. Similarly, $Z \cap B \in R_{\omega_1}$. So, $G \to G$.

It should be noted that this argument may be used to show that if $|T| = \omega_1$, then every subset of T^2 is in the family $R_{\sigma\delta}$. This fact is proven by different means by Kunen [4].

Also, it should be pointed out that if statement 5 holds, then if H is a family of c subsets of E, there is a countable family G of subsets of E such that $H \subseteq \bigcup_{\alpha < \omega_1} G_{\alpha}$. This problem was raised by Ulam and Rothberger [9], [14].

Clearly, $\overrightarrow{6} \rightarrow 7$. It is unknown to the author whether $7 \rightarrow 6$.

We shall now show that $7 \rightarrow 8$.

Let A and B be the sets described above. Let $W \subseteq E^2$ and let $H = \{(A \cap W)^y | y \in E\}$. Clearly, each member of H has cardinality < c and $|H| \le c$. Thus, from 7, there is a G, $|G| \le \omega_0$ such that $H \subseteq \bigcup_{\gamma \le \omega_1} G_{\gamma}$.

For each $\gamma < \omega_1$, let $K_{\gamma} = \{(x,y) | (x,y) \in A \cap W \text{ and } (A \cap W)^{\gamma} \in G_{\gamma}\}$. It follows from Theorem 3 of [1] that $K_{\gamma} \in R_{\gamma}$.

Thus, $W \cap A = \bigcup_{\gamma < \omega_1} K_{\gamma}$. There is a similar argument for $W \cap B$ and certainly $7 \to 8$ since ω_1 is not a real-valued measurable cardinal.

Finally, we show $8 \to 9$. We argue indirectly. Suppose κ , $\kappa \leqslant c$, is real-valued measurable and 8 holds. Let ω_{α} be the first real-valued measurable cardinal and let $S = \{\gamma | \gamma < \omega_{\alpha}\}$ and let $A = \{(x,y) | (x,y) \in S \times S \text{ and } x \text{ precedes } y\}$.

It follows from statement 8 that there is a subfamily $G = \{A_{\gamma}\}_{{\gamma} < \lambda}$ of the Borel field generated by the rectangles over S such that $A = \bigcup_{{\gamma} < \lambda} A_{\gamma}$ and λ is not real-valued measurable.

Let μ be a free probability measure on ω_{α} which is ω_{α} -additive.

For each $\gamma < \lambda$, A_{γ} is $\mu \times \mu$ -measurable. We calculate the measure of A_{γ} by Fubini's theorem.

$$\mu \times \mu(A_{\gamma}) = \int_{S \times S} \chi_{A_{\gamma}} d(\mu \times \mu) = \int_{S} \left[\int_{S} \xi_{A_{\gamma}}(x, y) \, d\mu(x) \right] d\mu(y).$$

But, for each y, $\int_S \xi_{A_{\gamma}}(x,y) d\mu(x) = \mu(A_{\gamma}^y) = 0$. Thus, $(\mu \times \mu)(A_{\gamma}) = 0$. For each $\gamma < \lambda$, let $P_{\gamma} = \{x | \mu((A_{\gamma})_x) > 0\}$. It follows from Fubini's theorem that each P_{γ} has μ -measure 0.

However, for each $x \in S$, $\mu(A_x) > 0$ and $A_x = \bigcup_{\gamma < \lambda} (A_{\gamma})_x$. Thus, $\bigcup_{\gamma < \lambda} P_{\gamma} = S$. But, since μ is ω_{α} -additive, $\mu(S) = 0$. This contradiction completes the proof of the theorem.

REMARK 1. The theorem that $8 \to 9$ was also proven by E. Fisher in his thesis [2]. In fact, Fisher showed that no well-ordering of ω_{α} is in the ω_{α} -algebra generated by R. The author was unaware of this and thanks the referee for pointing this out and for making a number of other helpful comments.

REMARK 2. In the first issue of Colloquium Mathematicum, Banach showed that the continuum hypothesis implies that there is a countable family of subsets of I, the unit interval, such that Lebesgue measure cannot be extended from the Lebesgue measurable sets to a σ -algebra containing these sets. The same result holds under Martin's Axiom. Any countable family $\{E_n\}_{n=1}^{\infty}$ such that a well-ordering of I (regarded as a subset of $I \times I$) is in the σ -algebra generated by the rectangles $A_n \times A_m$ will suffice. The argument is the same as above, in view of the fact that Lebesgue measure is c-additive under Martin's Axiom [6].

As mentioned earlier, it is apparently unknown whether $R_{\omega_1}=2^{E^2}$ implies $R_2=R_{\sigma\delta}=2^{E^2}$. In fact, it is apparently unknown whether there is any family of sets G such that $G_{\alpha}=G_{\alpha+1}$, but $G_{\beta}\neq G_{\gamma}$ for $\beta<\alpha$ and $\alpha>3$ [3]. It is known that the Baire order of compact T_2 spaces is either 0, 1 or ω_1 (here G is the family of all closed O_{δ} sets) [8]. It is apparently unknown what the Borel order of a compact T_2 space may be (here G is the family of sets which are the intersection of an open set and a closed set).

We now describe the Borel subsets of the ordinal spaces $[0, \alpha)$ provided with the order topology. First, in Theorem 4, the Borel subsets of $[0, \omega_1)$ are described. This theorem was proven by M. Bhaskara Rao and K. P. S. Bhaskara Rao [21].

THEOREM 3. Every Borel subset of $[0, \omega_1)$ can be expressed as the union of countable many sets, each of which is the intersection of an open set and a closed set.

PROOF. Let \mathfrak{N} be the σ -algebra of all subsets E of $[0, \omega_1)$ such that E or E' contains a closed unbounded subset of $[0, \omega_1)$. Clearly \mathfrak{N} contains the open sets and the closed sets.

Suppose $E \in \mathfrak{N}$ and E' contains a closed unbounded set F_0 . Let $\{V_{\alpha}\}_{{\alpha} \in A}$ be the set of all order components of the complement of F. Then $E \cap V_{\alpha}$ is countable: $E \cap V_{\alpha} = \{x_{\alpha n}\}_{n=1}^{\infty}$. Let $K_n = \{x_{\alpha n} | \alpha \in A\}$. For each n, K_n is closed in F. Thus, $K_n = F_n \cap V$, where $F_n = \overline{K}_n$ and V = F' and $E = \bigcup_{n=1}^{\infty} K_n$.

If $E \in \mathfrak{M}$ and E contains a closed unbounded set F_0 , then as before $E - F_0 = \bigcup_{n=1}^{\infty} (F_n \cap V)$ and $E = F_0 \cup \bigcup_{n=1}^{\infty} (F_n \cap V)$ where $V = F'_0$.

Thus, \mathfrak{N} is the family of all Borel subsets of $[0, \omega_1)$ and E is a Borel subset of $[0, \omega_1)$ if and only if E or E' contains a closed unbounded set.

REMARK 3. In contrast with the classical development, the smallest family containing the closed subsets of $[0, \omega_1)$ which is closed under countable unions and intersections is not the Borel algebra generated by the closed sets. In fact, let $\Re = \{x | x \text{ is countable or } x \text{ contains an unbounded closed set } \}$. Then \Re contains all the closed sets, $\Re_{\sigma} = \Re_{\delta} = \Re$, and yet $\Re \neq \Re$.

REMARK 4. It is known that the σ -algebra generated by Borel measurable rectangles in $[0,\omega_1)\times[0,\omega_1)$ does not include all Borel subsets of $[0,\omega_1)\times[0,\omega_1)$. In fact, the sets $D_1=\{(x,y)|y>x\}$ and $D_2=\{(x,y)|y< x\}$ are disjoint open sets which are not measurable with respect to the outer measure induced by the gauge $g(A\times B)=\mu(A)\cdot\mu(B)$, where μ is Dieudonne's measure: $\mu(E)=1$, if E contains a closed unbounded set and $\mu(E)=0$, otherwise.

We have

$$\mu_g^*(E) = \inf \left\{ \sum_{n=1}^{\infty} g(A_n \times B_n) | \bigcup_{n=1}^{\infty} A_n \times B_n \supset E \right\}.$$

It follows that μ_g^* is $\{0,1\}$ -valued. We show $\mu_g(D_1) = \mu_g(D_2) = 1$ to show that there are nonmeasurable Borel sets. If $\mu_g(D_1) = 0$, then there is a sequence $\{A_n \times B_n\}_{n=1}^{\infty}$ such that $D_1 \subset \bigcup_{n=1}^{\infty} (A_n \times B_n)$ and for each n, A_n or B_n fails to contain a closed unbounded set.

Let A_{n_1}, A_{n_2}, \ldots be the sequence of all the A_n 's of μ -measure 0. Let F be a closed unbounded subset of $\bigcap_{i=1}^{\infty} A'_{n_i}$. Let $x \in F$ and let $K = \{y | y > x\}$. Then $\{x\} \times K \subset D_1$ and $\{x\} \times K \subset \bigcup_{i=1}^{\infty} (A_{m_i} \times B_{m_i})$ where A_{m_i} 's contain unbounded closed sets. Then no B_{m_i} contains an unbounded set and yet $K \subset \bigcup_{i=1}^{\infty} B_{m_i}$. This is a contradiction.

Note. The referee points out that D_1 and D_2 are not measurable in $\mu \times \mu$ follows immediately by Fubini's theorem, as in the proof of $8 \to 9$ in Theorem 2.

THEOREM 4. Let α be an ordinal. Every Borel subset of $[0, \alpha)$ can be expressed as the union of countably many sets, each of which is the intersection of an open set and a closed set.

PROOF. Clearly, the theorem holds for all ordinals α , $\alpha \leq \omega_1$. It is also easy to show that if the theorem holds for the ordinal α , then it holds for $\alpha + 1$.

So assume α is a limit ordinal and the theorem holds for all $\beta < \alpha$. We consider two cases.

Case 1. cf $(\alpha) = \alpha$.

In this case, let $\mathfrak{N} = \{E | E \text{ or } E' \text{ contains a closed unbounded set and } \forall \gamma < \alpha, E \cap [0, \gamma) \text{ is Borel in } [0, \gamma) \}.$

 \mathfrak{N} is a σ -algebra and \mathfrak{N} contains both the closed and the open subsets of $[0, \alpha)$.

Suppose $E \in \mathfrak{N}$ and $E' \supset F_0$, F_0 a closed unbounded set. Let $\{I_\gamma\}_{\gamma \in \Gamma}$ be the set of order components of $[0, \alpha) - F_0$.

Then, $E \cap I_{\alpha}$ is Borel in I_{α} . Thus, $E \cap I_{\alpha} = \bigcup_{n=1}^{\infty} (F_{n\alpha} \cap O_{n\alpha})$, where $F_{n\alpha}$ is closed in I_{α} and $O_{n\alpha}$ is open in I_{α} .

For each n, let $F_n = \overline{\bigcup_{\gamma \in \Gamma} F_{n\gamma}}$ and let $U_n = \bigcup_{\gamma \in \Gamma} O_{n\gamma}$. It follows that $E = \bigcup_{\gamma} (E \cap I_{\gamma}) = \bigcup_{n=1}^{\infty} (F_n \cap U_n)$.

If $E \in \mathfrak{M}$ and $E \supset F_0$, F_0 a closed unbounded set, then $(E - F_0) \supset F_0$ and we obtain $E = F_0 \cup \bigcup_{n=1}^{\infty} (F_n \cap U_n)$.

Case II. cf $(\alpha) = \tau < \alpha$.

In this case fix a set $F_0 = \{\gamma_\beta\}_{\beta < \tau}$ running through α and such that F_0 is closed. Let $\{I_\sigma\}_{\sigma \in \Sigma}$ be the set of order components of F_0 . If E is Borel in $[0,\alpha)$, then $E \cap F_0$ is Borel in F_0 and $E \cap I_\sigma$ is Borel in I_σ . Since $\tau < \alpha$, $E \cap F_0 = \bigcup_{n=1}^\infty (\mathfrak{K}_n \cap V_n)$, where \mathfrak{K}_n is closed in F_0 and V_n is open in F_0 . Thus, $E \cap F_0 = \bigcup_{n=1}^\infty F_{2n} \cap U_{2n}$, F_{2n} closed in $[0,\alpha)$ and U_{2n} open in $[0,\alpha)$. For each $\sigma \in \Sigma$, $E \cap I_\sigma = \bigcup_{n=1}^\infty (F_{n\sigma} \cap U_{n\sigma})$. Let $F_{2n-1} = \bigcup_{\sigma \in \Sigma} F_{n\sigma}$ and $U_{2n-1} = \bigcup_{\sigma \in \Sigma} U_{n\sigma}$. It follows that $E \cap F_0' = \bigcup (F_{2n-1} \cap U_{2n-1})$ and $E = \bigcup_{n=1}^\infty (F_n \cap U_n)$. Q.E.D.

Thus, if one considers the compact T_2 space $[0, \alpha]$, it has Borel order 1 no matter what ordinal α is.

Problem. Does this result hold for all compact scattered T_2 spaces? Is the Borel order of the other compact T_2 spaces ω_1 ?

In [21], it is shown that there is no nonatomic, countably additive, finite measure defined on the Borel subsets of $[0, \omega_1)$. We generalize this in the next theorem.

Theorem 5. If there is no real-valued measurable cardinal κ with $\kappa \leqslant \alpha$, then every countably additive finite measure defined on the Borel subsets of $[0,\alpha)$ is purely atomic.

PROOF. Let us assume the contrary. Let us assume that α is the first ordinal for which such a measure exists and that μ is a nonatomic probability measure defined on the Borel subsets of $[0, \alpha)$.

Notice that if E is a Borel subset of $[0, \alpha)$ such that E is Borel isomorphic to some space $[0, \beta)$, with $\beta < \alpha$, then $\mu(E) = 0$. Next notice that if F is a closed cofinal subset of $[0, \alpha)$, then the open set U = F' has measure zero. This can be seen as follows: First let φ be a 1-1 map from $[0, \beta)$, for some $\beta \le \alpha$, onto the set of order components of U. Define ν on each subset W of $[0, \beta)$ by $\nu(W) = \mu(\bigcup \{\varphi(\gamma) : \gamma \in W\})$. Then ν is a free countably additive finite measure defined on all subsets of $[0, \beta)$. Therefore $\nu([0, \beta)] = \mu(U) = 0$.

Suppose E is a Borel set which fails to contain a closed cofinal set. By the previous theorem, $E = \bigcup_{i=1}^{\infty} (F_i \cap U_i)$, where for each i, F_i is closed and U_i is open. For each i, either F_i or U_i fails to contain a closed cofinal set. If U_i does not contain such a set, then $\mu(U_i) = 0$. If F_i fails to contain such a set, then F_i is a subset of an open set not containing a closed cofinal set. Therefore, $\mu(E) = 0$.

Finally, notice that if B is a Borel set, then either B or B' contains a closed cofinal subset. But, this implies that μ is purely atomic.

REMARK. It is known that every regular Borel measure on any ordinal space (or, more generally, any compact dispersed space) is concentrated on a countable set.

REFERENCES

- 1. R. H. Bing, W. W. Bledsoe and R. D. Mauldin, On sets generated by rectangles, Pacific J. Math. 51 (1974), 27-36.
- 2. E. R. Fisher, Toward integration without fear, Ph.D. Thesis, Department of Mathematics, Carnegie Mellon University, 1969.
 - 3. K. Kolmogorov, Problème 65, Fund. Math. 25 (1935), 578.
- 4. K. Kunen, Inaccessibility properties of cardinals, Ph.D. Thesis, Department of Mathematics, Stanford University, August 1968.
- 5. Szpilrajn-Marczewski, O miersalnosi i warunku Baire's, C. R. du I Congres des Math. des Pays Slaves, Varsovi 1929, p. 209.
- 6. D. A. Martin and R. M. Solovay, *Internal Cohen extensions*, Ann. Math. Logic 2 (1970), no. 2, 143—178. MR 42 #5787.
- 7. R. D. Mauldin, On generalized rectangles and countably generated families, Fund. Math. (to appear).
- 8. _____, Baire functions, Borel sets and ordinary function systems, Advances in Math. 12 (1973), 418—450.
- 9. F. Rothberger, On families of real functions with a denumerable base, Ann. of Math. (2) 45 (1944), 397—406. MR 6, 120.
- 10. M. E. Rudin, A subset of the countable ordinals, Amer. Math. Monthly 64 (1957), 351. MR 19. 4.
- 11. W. Sierpinski, Sur les rapports entre 1 existence des intégrales $\int_0^1 f(x,y) dx \int_0^1 f(x,y) dy$ et $\int_0^1 dx \int_0^1 f(x,y) dy$, Fund. Math. 1 (1920), 142—147.
 - 12. _____, Sur les espaces metriques universels, Fund. Math. 33 (1945), 123—136. MR 7, 420.
- 13. S. M. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 141—150.
 - 14. ——, Problem 74, Fund. Math. 30(1938), p. 365.
- 15. ——, Problems in modern mathematics, Science Editions, Wiley, New York, 1964. MR
- 16. A. S. Esenin-Vol'pin, On the existence of a universal bicompactum of arbitrary weight, Dokl. Akad. Nauk SSSR 68 (1949), 649—652. (Russian) MR 11, 165.

- 17. W. W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Springer-Verlag, New York, 1974.
- 18. R. Mansfield, The solution to one of Ulam's problems concerning analytic sets. II, Proc. Amer. Math. Soc. 26 (1970), 539—540. MR 43 #4988.
 - 19. B. V. Rao, Remarks on analytic sets, Fund. Math. 66 (1969/70), 237-239. MR 43 #451.
- 20. —, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614—617. MR 39 #4014.
- 21. M. Bhaskara Rao and K. P. S. Bhaskara Rao, Borel σ -algebra on $[0, \Omega]$, Manuscripta Math. 5 (1971), 195—198. MR 45 #2118.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611