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COUNTABLY GENERATED FAMILIES

R. DANIEL MAULDIN

Abstract. This paper discusses some interrelationships between various

statements involving sets generated by rectangles, universal spaces, and real-

valued measures on the continuum. Borel sets on ordinal spaces are also

discussed.

Definition.    Let E denote a set. If A  is a subset of E2 = E X E, let

Ax = {.y|(x,.y) G A), for each x in E and let Ay = {x|(x,_y) G A], for each y

in E. Let R be the family of all sets of the form A X B in E2.

If G is a subset of 2E, let G0 be G and for each ordinal a, let Ga be the family

of all countable unions (intersections) of sets in Uy<aGL< if a is odd (even).

Limit ordinals will be considered even. Of course, Gu is the smallest family

including G which is closed under countable unions and intersections; Gu is

the Borel lattice generated by G. It can be checked that if for. each A G G,

A' G G , then Gu is closed under complements and Gu is then the a-algebra

or Borel algebra generated by G.

In [1], a study is made of the Borel lattice (algebra) generated by the family

R and a number of the results stated in that paper will be used here. In

particular, if |£| > c, then the main diagonal in £ X £ is not in Ra. If

\E\ < «,, then 2E = Ra = RaS. (It should be noted that throughout this

paper, the Axiom of Choice is assumed and cardinals are regarded as initial

ordinals.)

Kunen [4] investigated the family Ru when \E\ < c. He showed that

Martin's Axiom implies RaS = 2E , if \E\ < c.

Recently, Franklin Tall and Kenneth Kunen have constructed a model of

ZFC in which Martin's Axiom fails and yet 2E = Ru, if \E\ < c. R.

Mansfield [18] and B. V. Rao [19], [20] have also studied the sets generated by

rectangles and have solved some of Ulam's problems with their aid.

There are a number of interesting consequences which follow from the

assumption that 2E = RU] and from the techniques which have been used in

the study of families generated by R.

Results.

Theorem 1. Suppose 2£l = RaS, where \E\ = c, and if X < c, then 2X < c.

Then there is a subset M <?/[0,l] such that the Banach space Bx (M) consisting of

the bounded real-valued functions of Baire's class I defined on M and under the

uniform norm is universal for all Banach spaces of cardinality c.
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Proof. It is known that the condition A < c implies 2A < c is equivalent

to c = c". It is known that c = c^ implies there is a zero-dimensional

compact T2 space U of weight c such that if Y is a compact T2 space weight <

c, then y is a continuous image of U [16], [17, p. 131]. If A" is a Banach space

and | A" | = c, then A can be embedded in a space C(S) where S is a compact

7] space and |C(S)| = c. But if |C(S)| S c, then weight of S is g c. Thus, A"

can be embedded in C(U). Since U has weight c, \C(U)\ < c. Now by

Theorem 4.4 of [7], there is a subset M of [0,1] such that BX(M) is universal

for all Banach spaces of cardinality c.

Question. Does the existence of a universal Banach space of cardinality c

imply c = cS or that there is a compact T2 space, U, of weight c so that every

compact T2 space of weight c is a continuous image of If!

There are a number of other consequences of the assumption that 7?2 = RaS

= 2E by itself or together with a cardinality condition. For example, if

2*1 = 2*° and R2 = 2E\ then there exists a Q-set [7, Theorem 4.5].

In [4], Kunen showed that Ra = 2E implied that \E\ is not a real-valued

measurable cardinal. As Kunen points out, his argument is a variant of the

known fact that a well-ordering of the real numbers is not Lebesgue

measurable [11]. We shall generalize this argument as follows:

Theorem 2. Let \E\ = c. For each positive integer i, statement i implies

statement i + (1).

1. 2N° = N,;

2. Martin's Axiom;

3. 2E\ = R2 = RoS;
4-2£   =*„,;
5. there is a countable ordinal a such that if H is a family of c subsets of E, then

there is a countable family G of subsets of E such that 77 C Ga;

6. there is a countable ordinal a such that if 77 is a family of c subsets of E and

each member of 77 has cardinality < c, then there is a countable family G such

that 77 C Ga;

1. if H is a family of c subsets of E and each member of 77 has cardinality <

c, then there is a countable family G such that 77 is a subcollection of the Borel

algebra generated by G;

8. if IV is a subset of E2, then W is the union of a subfamily G of R such that

the cardinality of G is not real-valued measurable;

9. if k is a real-valued measurable cardinal, then zc > c.

Proof. For the first three implications, see Kunen [4]. As has been

mentioned, 3 -^ 2. Clearly 3 —> 4, and in [1] it is shown that 4 —> 5. The

question "Does 4 —* 3?" was raised in [1]. Clearly 5 —> 6.

We shall now show that 6 —» 4.

Let E be well ordered into an initial type; E = {xltx2.xa,... \a < c).

Let A = {(xa,xy)\a < y) and let B = E2 - A. For each>\ \Ay\ < c and for

each x,\Bx\ <C c.
Let Z C £2. Then Z = (Z D A) U (Z n B). Let 77 = {(Z n A)y\y

G £}. Each member of 77 has cardinality < c. Thus, if 6 holds, there is a

countable family of G of subsets of E and a countable ordinal a such that

77 C Ga. It follows directly from Theorem 3 of [1] that Z n A G RU].

Similarly, Z n B G R^. So, 6 -> 4.
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It should be noted that this argument may be used to show that if |F| = u,,

then every subset of T2 is in the family RaS. This fact is proven by different

means by Kunen [4].

Also, it should be pointed out that if statement 5 holds, then if 7/ is a family

of c subsets of E, there is a countable family G of subsets of E such that

77 C Ua<u Ga. This problem was raised by Ulam and Rothberger [9], [14].

Clearly, 6 —> 7. It is unknown to the author whether 7 —> 6.

We shall now show that 7 —» 8.

Let A and B be the sets described above. Let W C E2 and let T7

= [iA n W)y\y G E}. Clearly, each member of 77 has cardinality < c and

1771 < c. Thus, from 7, there is a G, \G\ < w0 such that H Q \Jy<UiGy.

For each y < «,, let Ky = {(x,y)\(x,y) G A n IF and (A n IF)' G Gy}.

It follows from Theorem 3 of [1] that Tvy G T?y.

Thus, W D A = Uy<oilKy. There is a similar argument for W n T? and

certainly 7 —> 8 since wi is not a real-valued measurable cardinal.

Finally, we show 8 —» 9. We argue indirectly. Suppose k, k < c, is real-

valued measurable and 8 holds. Let coa be the first real-valued measurable

cardinal and let 5 = (y|y < cca] and let A = {(x,y)\(x,y) G S

X S and x precedes y}.

It follows from statement 8 that there is a subfamily G = [Ay)y<x of the

Borel field generated by the rectangles over S such that A = Uy<\Ay and A

is not real-valued measurable.

Let u be a free probability measure on ua which is coa-additive.

For each y < X, A is pX jn-measurable. We calculate the measure of A by

Fubini's theorem.

p X piAy) = fsxs XAyd(p X p) = fs [ fs £Ay(x,y)dp(x)j dp(y).

But, for each ^, fs $Ay(x,y)dp(x) = p(A?) = 0. Thus, (p X p)(Ay) = 0.

For each y < A, let T^ = {x\p((Ay)x) > 0}. It follows from Fubini's theo-

rem that each Py has ju-measure 0.

However, for each x G S, p(Ax) > 0 and Ax = Uy<x(Ay)x. Thus, Lly<xPy

= S. But, since jn is coa-additive, p(S) = 0. This contradiction completes the

proof of the theorem.

Remark 1. The theorem that 8 —» 9 was also proven by E. Fisher in his

thesis [2]. In fact, Fisher showed that no well-ordering of wa is in the o>a-

algebra generated by R. The author was unaware of this and thanks the referee

for pointing this out and for making a number of other helpful comments.

Remark 2. In the first issue of Colloquium Mathematicum, Banach

showed that the continuum hypothesis implies that there is a countable family

of subsets of T, the unit interval, such that Lebesgue measure cannot be

extended from the Lebesgue measurable sets to a a-algebra containing these

sets. The same result holds under Martin's Axiom. Any countable family

{En}™=x such that a well-ordering of I (regarded as a subset of 7 X 7) is in the

a-algebra generated by the rectangles AnX Am will suffice. The argument is the

same as above, in view of the fact that Lebesgue measure is c-additive under

Martin's Axiom [6].
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As mentioned earlier, it is apparently unknown whether Ru = 2 implies

7?2 = RaS = 2E . In fact, it is apparently unknown whether there is any

family of sets G such that Ga = Ga+X, but Gp ¥= Gy for B < a and a > 3 [3].

It is known that the Baire order of compact T2 spaces is either 0, 1 or co, (here

G is the family of all closed 00 sets) [8]. It is apparently unknown what the

Borel order of a compact T2 space may be (here G is the family of sets which

are the intersection of an open set and a closed set).

We now describe the Borel subsets of the ordinal spaces [0, a) provided with

the order topology. First, in Theorem 4, the Borel subsets of [0, co,) are

described. This theorem was proven by M. Bhaskara Rao and K. P. S.

Bhaskara Rao [21].

Theorem 3. Every Borel subset of [0,co,) can be expressed as the union of

countable many sets, each of which is the intersection of an open set and a closed

set.

Proof. Let All be the a-algebra of all subsets E of [0, co,) such that E or £"

contains a closed unbounded subset of [0, co,). Clearly CD1L contains the open

sets and the closed sets.

Suppose E G 'STLand E' contains a closed unbounded set F0. Let {Vx}a£A be

the set of all order components of the complement of F. Then E D Va is

countable: E n Va = {xan}^Lx. Let K„ = {xan\a G A}. For each n, K„ is

closed in F. Thus, Kn = Fn n V, where Fn = K„ and V = F' and E
= U"=1K„.

If E G 9H and E contains a closed unbounded set F0, then as before

E - F0 =  U„°°=I(F„ n   V) and E = F0 U   U„°°=1(F„ n  V) where K = F'0.

Thus, A\l is the family of all Borel subsets of [0, co,) and E is a Borel subset

of [0, co,) if and only if E or £" contains a closed unbounded set.

Remark 3. In contrast with the classical development, the smallest family

containing the closed subsets of [0, co,) which is closed under countable unions

and intersections is not the Borel algebra generated by the closed sets. In fact,

let 5C = {x\x is countable or x contains an unbounded closed set }. Then %

contains all the closed sets, %a = %s = % and yet 3C =£ GAL

Remark 4. It is known that the a-algebra generated by Borel measurable

rectangles in [0, co,) X [0, co,) does not include all Borel subsets of [0, co,)

X [0,w.). In fact, the sets 7), = {(x,y)\y > x) and D2 = {(x,y)\y < x) are

disjoint open sets which are not measurable with respect to the outer measure

induced by the gauge g(A X B) = fi(A) ■ n(B), where p. is Dieudonne's

measure: ii(E) = 1, if E contains a closed unbounded set and fi(E) = 0,

otherwise.

We have

f    CO 00 "V

p*(E) = inf{   2 g(AnXB„)\ UA„xBn D E\.s L«=i "=i J

It follows that p.* is {0,l}-valued. We show pg(Dx) = /xg(7)2) = 1 to show that

there are nonmeasurable Borel sets. If /t (73,) = 0, then there is a sequence

{A„x Bn}^=, such that 7), C \J^LX(A„ X B„) and for each n,Anov Bn fails to

contain a closed unbounded set.
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Let A„ , An , ... be the sequence of all the An's of ,u-measure 0. Let F be a

closed unbounded subset of C\fL\A'n.- Let x G F and let K = {y\y > x}.

Then (x) X K C Dx and fx} X K C U^.f/i^ X Bm.) where ^m.'s contain

unbounded closed sets. Then no Bm contains an unbounded set and yet

K C  U," i Bm. This is a contradiction.

Note. The referee points out that Dx and 7)2 are not measurable in p X p

follows immediately by Fubini's theorem, as in the proof of 8 —» 9 in Theorem

2.

Theorem 4. Let a be an ordinal. Every Borel subset of[0, a) can be expressed

as the union of countably many sets, each of which is the intersection of an open

set and a closed set.

Proof. Clearly, the theorem holds for all ordinals a, a < wx. It is also easy

to show that if the theorem holds for the ordinal a, then it holds for a + 1.

So assume a is a limit ordinal and the theorem holds for all [3 < a. We

consider two cases.

Case 1. cf (a) = a.

In this case, let 9>lc = {E\E or £" contains a closed unbounded set and

Vy < a, E H [0,y) is Borel in [0,y)}.

<Dll is a a-algebra and "311 contains both the closed and the open subsets of

[0, a).

Suppose E G 9H and E' D F0, F0 a closed unbounded set. Let {Ty}ver be

the set of order components of [0, a) - F0.

Then, E n Ia is Borel in Ia. Thus, E D Ia = U„*Lx(Fna (1 Ona), where Fna

is closed in Ia and Ona is open in Ia.

For each n, let T^ = UyerT^v and let Un = U7f=rOny. It follows that

e= uY(£n 7y)= U„«L,(F„ n (/„).
If E G 9!cand £ D F0, F0 a closed unbounded set, then (E — F0) A F0 and

we obtain E = F0 U   U^°=1(T^ n  £/„).

Ca^e II. cf (a) = t < a.

In this case fix a set F0 = {yg}p<T running through a and such that F0 is

closed. Let {Ta)ae2 be the set of order components of F0'. If E is Borel in [0, a),

then E n F0 is Borel in F0 and £ n I„ is Borel in TCT. Since t < a, E n F0

= U^°=1(5C„ n i^), where 3C„ is closed in F0 and Vn is open in F0. Thus,

E n F0 = U^LiF2„ n U2n, F2n closed in [0, a) and U2n open in [0, a). For

each a G 2, £ n T0 = U^.,^ n Uno). Let F2„_, = Uae2Fno and c/2n_,

= Uae2L/no. It follows that E D F0' = U(F2„_, n U2n_x) and £

= U„00=1(Fn n t/„).   Q.E.D.

Thus, if one considers the compact T2 space [0, a], it has Borel order 1 no

matter what ordinal a is.

Problem. Does this result hold for all compact scattered T2 spaces? Is the

Borel order of the other compact T2 spaces wi?

In [21], it is shown that there is no nonatomic, countably additive, finite

measure defined on the Borel subsets of [0, «i). We generalize this in the next

theorem.

Theorem 5. If there is no real-valued measurable cardinal k with k < a, then

every countably additive finite measure defined on the Borel subsets of [0, a) is

purely atomic.
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Proof. Let us assume the contrary. Let us assume that a is the first ordinal

for which such a measure exists and that u is a nonatomic probability measure

defined on the Borel subsets of [0, a).

Notice that if E is a Borel subset of [0, a) such that E is Borel isomorphic to

some space [0,B), with B < a, then jj.(E) = 0. Next notice that if F is a closed

cofinal subset of [0, a), then the open set U = F' has measure zero. This can

be seen as follows: First let tp be a 1-1 map from [0,/i), for some B j| a, onto

the set of order components of U. Define v on each subset W of [0, B) by

v(W) = ju(U{<)D(y) : y G W}). Then j- is a free countably additive finite

measure defined on all subsets of [0,/i). Therefore ^([0,B)] = p.(U) = 0.

Suppose E is a Borel set which fails to contain a closed cofinal set. By the

previous theorem, E = U,?!, (7^ n Ut), where for each i, Ft is closed and cV, is

open. For each i, either Ft or tV, fails to contain a closed cofinal set. If Ui does

not contain such a set, then pifJ/) = 0. If Fi fails to contain such a set, then Ft

is a subset of an open set not containing a closed cofinal set. Therefore,

p.(E) = 0.
Finally, notice that if B is a Borel set, then either B or B' contains a closed

cofinal subset. But, this implies that ju is purely atomic.

Remark. It is known that every regular Borel measure on any ordinal space

(or, more generally, any compact dispersed space) is concentrated on a

countable set.
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