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AN IMBEDDING THEOREM FOR METRIC SPACES

STEPHEN LEON LIPSCOMB

Abstract. A simple solution to the imbedding problem for the class of

separable metric spaces has been known for a long time: (Urysohn's

Imbedding Theorem) A topological space is separable metric if, and only if, it

can be imbedded in the topological product of countably many unit intervals.

We see that products of the unit interval make an especially informative

type of imbedding space since the finite (Lebesgue) dimensional separable

metric spaces are those that can be imbedded in a finite product of intervals.

The author has recently shown that this result concerning the finite case

could be extended to arbitrary metric spaces if we use a topological

generalization of the unit interval. This present paper shows that if we use

this same generalization of the interval, then we can obtain an analogue to

Urysohn's Imbedding Theorem. Besides presenting the first unified results

which simultaneously generalize both separable cases, this paper contains

comparisons with existing imbedding theorems and imbedding spaces.

1. Introduction. In this paper we establish an imbedding theorem for metric

spaces (Theorem 2). This theorem represents the "limiting case" of an

imbedding theorem (Theorem 1) for metric spaces of finite dimension. (The

dimension concept is the Lebesgue or covering dimension.)

Before either of these theorems can be understood, we must give some

definitions and make a few explanations: Let t be an infinite cardinal and let

/( be a set of cardinality t, i.e., «(A) = t. Let NiA) be Baire's zero-

dimensional space. iNiA) is topologically a product space having a countable

infinity of factor spaces-each homeomorphic to a discrete space of n(/1).)

Two points (a,, a2, ...),(/?,, B2, . . . ) E NiA) are /^-related if, and only if,

a, = Bj for all / > 1, or, in case there exists aj such that (1) a, = /?, for i < /,

(2) a, ¥= fy, and (3) a, = BJ+i for all i > 1 and B} = aJ+i for all i > I. Let

NiA)/R = /(t) where /(t) is given the quotient topology induced by the

natural map tp: N\A)^> N\A)/R, i.e., R is an equivalence relation. Then

z E J it) is rational if N(n5~'(z)) = 2, and z is irrational if N((p_l(z)) = 1. This

is a topological generalization of identifying adjacent end points in the

Cantor Space. Indeed, a copy of unit interval, together with subspaces of

rational and irrational points, can be obtained by using these definitions. It is

only required that one use the Cantor Space considered as the countable

product of a two point discrete space instead of NiA).

With this terminology we can state both the imbedding theorem for metric
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spaces of finite dimension (see [6]) and  the  new imbedding theorem for

general metric spaces.

Theorem 1. A topological space of weight t > x0 is metric of dimension < n

if, and only if, it can be imbedded in the set of points of J (r)n+x which have at

most n rational coordinates.

Letting n go to infinity we get the statement of an imbedding theorem for

metric spaces. The proof of this theorem is given in the following sections.

Theorem 2. A topological space of weight t > n0 is metric if, and only if, it

can be imbedded in J(t)x, i.e., in the product of countably many copies of J (t).

Before moving on to a discussion and proof of Theorem 2 one important

comment concerning Theorem 1 should be made: The author has learned

from R. Engelking that K. Borsuk recently proved that the two-sphere cannot

be imbedded in a product of two one-dimensional spaces. Since J (r) is one

dimensional, we see that Theorem 1 is the best that can be obtained for the

finite case when we consider only finite products of the space J (r).

2. Discussion. This pair of theorems should be compared to the correspond-

ing pair of classical theorems for the separable metric case. (Theorems 3 and

4 below; see [2, p. 64] and [3, p. 125].) In view of the definition of J (t) above,

the desirable parallel between the general pair and the separable pair of

theorems is clear.

Theorem 3 (Classical Imbedding Theorem; see [10]). A topological space

of weight r = N0 is metric of dimension < n if, and only if, it can be imbedded

in the set of points of I2n+l which have at most n rational coordinates. (I2a+l

denotes the product space of 2n + 1 copies of the unit interval I.)

Theorem 4 (Urysohn's Imbedding Theorem). A topological space of

weight t = x0 is metric if, and only if, it can be imbedded in Z°°, i.e., in the

product space of countably many copies of the unit interval I.

Further, Theorems 1 and 2 should be contrasted with the corresponding

general imbedding theorems due to J. Nagata [7] and H. J. Kowalsky [4].

(Theorems 5 and 6 below; see [8, p. 184] and [9, p. 207].) For this, however,

we will need the definition of a star-space with index A: Let {I(a)\a G A} be

a system of unit segments [0, 1]. By identifying all zeros in (J {I(a)\a G A}

we get a star-shaped set S(A). Defining a metric d in S(A) by

f Ix - yl     if x,y belong to the same segment Z(a),
d(x,y) =

[ x + y      if x,y belong to distinct segments,

we obtain a metric space called star-shaped with index A. Let S(A)X denote

the product of countably many spaces S(A).

Theorem 5 (Nagata). Let x(A) = t. A topological space of weight r > n0 is

metric of dimension < n if, and only if, it can be imbedded in the set of points of

S(A)CC at most n of whose nonvanishing coordinates are rational.

Theorem 6 (Kowalsky).  Let  ti(A) = t. A   topological space of weight
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t > X0 is metrizable if, and only if, it is homeomorphic with a subspace of

SiA)°°.

We note that the statement of Theorem 6 is in some sense the limit of the

statement of Theorem 5, as n goes to infinity. However, this latter "limit

process" is not the same as the former, i.e., in the latter case we have an

infinite product space in each finite statement while in the two former cases

we had a finite product space for each finite statement.

Also, just as Theorem 1 is the best of its type, we can see that Nagata's

theorem is the best theorem obtainable under the assumption that one must

use star-spaces and form product spaces. This follows since any product of

finitely many star-spaces is a metric space with a a-star-finite open base while

not every finite dimensional metric space has a a-star-finite open base as

pointed out by Yu. Smirnov.

It is shown below that if t = nL4), then SiA) is topologically imbeddable

in J it). As a matter of fact a subset F of N iA) is chosen and mapped onto

SiA) in such a manner that the mapping involved is merely the relation R

restricted to F c NiA). Since SiA) could be defined in this way we see from

previous remarks that all of the imbedding spaces /, 5iA), and /(t) are

unified under this one type of construction.

3. On the proof of Theorem 2. The key to proving Theorem 2 in this paper

is an application of Theorem 6. We will show that if r = x(/l), then SiA) can

be imbedded in /(t). It then follows that SiA)00 is topologically imbeddable

in /(t)00. With this then we can apply the necessary part of Theorem 6 to

deduce the necessary part of Theorem 2. The sufficiency part of Theorem 2

follows easily from the fact that a product of countably many metric spaces is

metric (to see a proof that J (t) is metric see [5]). Thus, with these remarks, it

only remains to see that SiA) is topologically contained in Jit). This is

accomplished in the next section.

It is an open problem to obtain a proof of Theorem 2 using the techniques

developed in [6].

4. SiA) can be imbedded in J ir). We will use the following theorem for the

imbedding of SiA) into /(t). This theorem is standard, e.g., see [1, p. 123] of

Dugundji's text.

Theorem 7. Let p: F^> X be a continuous onto quotient map and f: F —> S

be continuous. Assume that fp~x is single valued ithat is,fis constant on each

fiber p~'(x)). Then fp~l: X -h> S is continuous. Also, fp"1 is a a closed map if,

and only if,/(U) is closed whenever U is a closedp-inverse set (£/ = p~ xpiU)).

In order to apply Theorem 7 we will need the following: Let a = (a,,

a2>. . . ) E NiA) be such that {a,|z = 1, 2 . . . } = Cia) c A is finite. In this

case we say a is of finite character. Also, we will call the members of C (a) the

characters of a.

Now let a0 E A be fixed throughout this section and define A' = A

— {a0}. Let F be all the members of NiA) which have at most two characters

with the restriction that when a member of F has exactlv two characters then

one of these characters is a0. Thus, if we pick a E A' and let

n,{a°, a}, = Fia) denote the product of countably many copies of the
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two-point discrete space {a0, a), then we can easily show that F = U [F(a)\

a G A'}. Let x be the characteristic function of A' defined on A, i.e.,

X(a) = 1 if a G A' and x(«) = 0 if a = a0. Let /: F—> S(A') be defined as

follows: If /3 G F(a) for some a G A', let

/(0)-2x(ft)/2'e/(o)

where 2x(A)/2' denotes the infinite series summed over the index i > 1.

With these statements we can prove the following lemmas.

Lemma 1. Lef /: F^ S(A')be defined as above. Let r\ G F and let {f} be a

sequence in F which converges to tj in F. Then the sequence [f(£)} converges

tof(r))inS(A').

Proof. In view of the topologies on F and S(A') it clearly suffices to show

that for two points £, tj G F such that (-, = tj. for / = 1, . . . , k we necessarily

have d(f(g), /(n)) < 1/2*"'. To show this we first assume that there is an

a G A such that £, tj G F(a). If £,. = r/, for / < k, then it follows from the

definition of/and d that d(f(g),f(i})) < 21/2' (where this sum is over those

i > k). But this last sum is equal to 1/2* which is less than 1/2*-'. For the

second part we assume that there is no a G A such that both £ and n belong

to F(a). Then |, = r/, for i < k implies £(. = a° = r/( for i < k. Hence

X(ij) — 0 = x(T)i) f°r ' ^ ^- Thus, from the definitions of / and d it follows

that

d(f(®,f(n)) <(\/2k) + (\/2k) = l/2k~\

Therefore, from the first statement above this proof is complete.    □

Lemma 2. Let M c S(A') be such that 0 G cl(AZ). If M n Z(a) is closed in

I (a) for each a G A', then M is closed in S(A').

Proof. Suppose that M is not closed in S(A'). Then there is an x G S(A')

such that x G cl(AZ) - M. Now clearly x G 1(a) - {0} for some a G A'.

However, 1(a) — {0} is an open subset of S(A') and therefore x is in the

closure of M n (1(a) — {0}) = M n 1(a). Since M n Z(a) is closed in 1(a)

we can see that x must be in M. Thus we have a contradiction and we are led

to the conclusion that M is closed in S(A').    □

Lemma 3. Let M c S(A') and 0 G M. If M n 1(a) is closed in 1(a) for

each a G A', then M is closed in S(A').

Proof. The proof is similar to the proof of Lemma 2.    □

Lemma 4. If a0 G H where H is a closed subspace of F, then f(a°) is not in

the closure off(H), i.e., f(a°) g cl(f(H)).

Proof. If H is closed and a0 G ZZ then there is an m such that when

PeF and Rt = a0 for all / < m then B G H. It is easy to see that the set

{P\d(f(a°), f(B)) < 1/2"1} is therefore disjoint from H. The conclusion

clearly follows.   □

Theorem 8, The map f: F —> S(A') is a closed map.

Proof. Let H be a closed subset of F. There are two cases to consider:
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First, suppose a0 G H. Then since H n Fia) is compact and/is continuous

(this follows directly from Lemma 1) we see that f(H n Fia)) = f(H) n

1(a) is a compact subset of 1(a) and, hence, closed in 1(a) for each a E A'.

By Lemma 4, f(a°) G cl(/(//)) and, hence, by Lemma 2 we see that /(//) is

closed in 5(/!')• This completes the case where a0 G H. Second, we suppose

a0 G //.In this case /(a0) = 0 G /(//) and a compactness argument similar

to the one used in the first case, together with Lemma 3, can be used to show

that/(//) is closed in S(A'). This therefore completes this proof.   □

Theorem 9. // N(^) = t > x0, then SiA) can be imbedded in ./(t).

Proof. We will make an application of Theorem 7. To do this we will let

(1) Fbe the subspace of NiA) that we defined above, (2) A be the image of F

under the natural map tp from NiA) to 7(t), and (3) S be the space SiA')

that we defined above. For maps, we will let p be the natural map <p restricted

to F c NiA), and we will let/be the map from F onto SiA') that we defined

above. With this notation we now show that the first sentence of Theorem 7 is

true. The continuity of p is clear while the continuity of/follows easily from

Lemma 1. To see that p is also a quotient map we note firstly that <p is a

closed map (see [5]) and, consequently, <p restricted to any cp-inverse set is a

closed map. Secondly, we recall that a continuous closed map is quotient.

Thus, since F is a qp-inverse set and p is q> restricted to F we see that p is a

quotient map. Therefore the first sentence of Theorem 7 holds. It is easy to

see that the second sentence is also true. Thus fp~x: p(F)—» SiA') is

continuous. To see that/?-1 is a closed map we will use the last sentence of

Theorem 7. To use this last sentence it suffices to show that/is a closed map.

But this is precisely the statement of Theorem 8. Thus/?-1: piF) -» SiA') is

a continuous closed map. To see that/?-1 is one-one and onto is easy. Thus

fp~x is a homeomorphism and it only remains to observe that SiA') is

obviously homeomorphic to SiA).    □
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