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SIMPLE MAXIMAL QUOTIENT RINGS

ROBERT A. RUBIN

Abstract. In this paper we consider the question of when a ring A has a

simple maximal left ring of quotients. In the first section we determine two

necessary conditions; viz. that A be left nonsingular, and when / and / are

nonzero ideals of A with / n J = 0, then I + J is not left essential in A. In

the second section we show that these conditions are also sufficient when A

is of finite left Goldie dimension. In addition, for a left nonsingular ring of

finite left Goldie dimension, we determine the ideal structure of the maximal

left ring of quotients.

Note. Any unadorned terms, e.g., nonsingular, finite dimensional, maximal

ring of quotients, are intended to hold on the left.

1. Necessary conditions. Various conditions sufficient to guarantee a simple

maximal ring of quotients are known, the most general of these being that the

ring be absolutely torsion-free [2, Theorem 2.1]. Since the maximal ring of

quotients of the nXn triangular matrix ring over a field is simple, the

preceding condition is certainly not necessary. In this section we determine

certain necessary conditions for a ring to have a simple maximal ring of

quotients. The first such condition is rather familiar, namely that the ring be

(left) nonsingular.

PROPOSITION 1.1. Let A be a ring with maximal ring of quotients Q. If Q is

simple, then A is Qeft) nonsingular.

Proof. If 91 is an essential left ideal of A, then (231 is an essential left ideal

of Q, for if 0 # q E Q, then there exists b E A such that 0 ¥= bq E A. Then

there is r E A such that 0 ¥= irb)q = rQjq) E 21 C Q2t. Now if Q is a simple

ring, then Q is nonsingular (as a Q-module), whence A must also be

nonsingular.

With Proposition 1.1 in hand we can obtain a formally weaker condition

equivalent to having a simple maximal ring of quotients.

Proposition 1.2. Let Abe a ring with maximal ring of quotients Q. Then Q

is simple if and only if Q is an absolutely torsion-free ring; i.e. if for every kernel

functor ileft exact preradicat) 8 of Q, either 8iQ) = 0 or 8iQ) = Q.

Proof. Since any simple ring is absolutely torsion-free, one implication is

immediate. Now assume that Q is absolutely torsion-free. Then Q is nonsin-
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gular, whence as in the proof of Proposition 1.1, A is also nonsingular.

Therefore Q is (left) self-injective, and so the proof of Theorem 2.1 of [2]

applies. Thus Q is simple.

We next obtain a necessary condition in terms of the ideal structure of A.

Theorem 1.3. Let A be a ring with maximal ring of quotients Q. Suppose that

Q is simple. Then for any nonzero ideals I, J of A, if I C\ J = 0, then I + J is

not essential as a left ideal of A.

Proof. Suppose that I and J are nonzero ideals with I n J = 0 and I + J

essential. We will show that IQJ = 0, whence it follows that QIQ is a proper

nonzero ideal of Q, a contradiction. So let a G I, b G J, q G Q, and suppose

that aqb ¥^ 0. Since I + J is essential and A is nonsingular (Proposition 1.1),

there is r G A such that raqb ¥^ 0 and raq G I + J. Thus 0 ¥= raq = x + y,

for some x G I, y G J. Now I(raq — x) = Iy = 0, and J (raq — x) = 0,

since ra, x G I. Thus (I + J)(raq — x) = 0, and since A is nonsingular,

raq G I. But then raqb G IJ = 0, a contradiction. Thus IQJ = 0, and the

theorem is proved.

Corollary 1.4. If A is a semiprime ring with simple maximal ring of

quotients, then every nonzero ideal of A is essential as a left ideal.

Proof. Let I be a nonzero ideal of A. If / is not left essential in A, then

there is a left ideal 31 ̂  0 of A such that I n 31 = 0 and I + 31 is left
essential. But 3IA n I is nilpotent and, hence, zero. So we have I n 3IA

= 0 and I + 31A left essential, contradicting Theorem 1.3. Thus I is essential.

2. The finite-dimensional case. In this section we show that for rings of finite

left Goldie dimension (rings with no infinite collection of nonzero left ideals

whose sum is direct) the converse of Theorem 1.3 holds. In addition, for

nonsingular finite-dimensional rings, we ascertain the ideal structure of the

maximal ring of quotients.

Proposition 2.1. Let A be a (left) finite-dimensional ring with maximal ring

of quotients Q. If Q is simple, then Q is semisimple (with d.c.c).

Proof. By Proposition 1.1, A is nonsingular. Hence, Theorem 1.6 of [3]

applies, yielding the result.

Remark. The results of this paper can be used to strengthen Theorem 1.6

of [3] a bit. Namely, we can easily show that a ring A has a semisimple

maximal ring of quotients if and only if A is nonsingular and finite dimension-

al. For if A has a semisimple maximal ring of quotients Q, then Q is

nonsingular, whence A is nonsingular as well. Then the theorem we are

discussing applies, from which we conclude that A is finite dimensional.

Theorem 2.2. Let A be a (left) finite-dimensional (left) nonsingular ring with

maximal ring of quotients Q. Then the following are equivalent:

(i) Q is a simple ring;
(ii) for any nonzero ideals I and J of A, if I D J = 0, then I + J is not left

essential in A.

Proof, (i) => (ii). This is just Theorem 1.3.
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(ii) => (i). Let A be a nonzero ideal of Q. Since Q is semisimple,

X = QE, e a nonzero central idempotent of Q. Let / = 1 — e. Then / is also

a central idempotent of Q, and {/ G A\re E A) = [r E A\rf E A}. This set,

which we denote D, is an ideal, left essential in A. Let I = De and J = Df.

Then / and J are ideals of A with I Ci J = 0. Furthermore iDe)e = De E A,

and (Z>/)/ = Df C A. Thus I + J E D. Finally if d E D, then d = de + df
E I + J. Thus I + J is left essential in A. So by (ii), 7 = 0, whence

/ = 0 and X = Q. Thus Q is a simple ring.

Remark. While condition (ii) of the preceding theorem may not be

equivalent to having a simple maximal ring of quotients in general, an

examination of the proof of the theorem reveals that the condition is

equivalent to the nonexistence of central idempotents ¥= 0, 1 in Q.

We now determine the ideal structure of the maximal ring of quotients of a

finite-dimensional nonsingular ring. So let A be such a ring, and let Q be its

maximal ring of quotients. If / is an ideal of A, let Ail) = {r E A\Ir = 0).

Then Ail) is an ideal of A.

Let X be an ideal of Q. Since Q is semisimple [3, Theorem 1.6], X = Qe for

some central idempotent e of Q. Let / = 1 — e, and D = [r E A\re E A}

= [r E A\rf E A}. Then, as in the proof of Theorem 2.2, De + Df = D,

which is left essential in A. Note that De = Qe n A = X n A, for if

qe G A, then iqe)e E A, whence qe E D, and so qe = qe E De. The other

inclusion is immediate. Similarly Df = Qf n A. Now (De)(/J>/) = 0, while if
iDe)r = 0, then Dier) = 0, whence the nonsingularity of A implies er = 0.

Thus r E Qf n A, and so Df = AiDe). Similarly, De = AiDf). Thus if X is
an ideal of Q, and if / = X n A, then / = A(A(I)).

Conversely, suppose that I is an ideal of A such that / = AiAQ)). Then /

is closed as a left ideal; i.e. I has no proper left essential extensions in A. For

if 23 is a proper essential extension of /, then since / = AiAil)), there is

x E 99 and a E AQ) such that ax ¥= 0. Now for some essential left ideal 55,

55ax C /. But 55ax; C A(I) as well, and so 1)ax C / n AQ). Now / n AQ)

= AiAQ)) n AQ) is zero since it is annihilated by the left essential ideal

/ + AQ). Thus 1)ax = 0, contradicting the nonsingularity of A. Next, observe

that I Q IQ n A. Furthermore, if x E I and q E Q are such that 0 # xq

E A, then there is an essential left ideal 5) of A with SD C / + AQ). If d E 55

is such that dxq ¥= 0, then d = dx + d2, with dx E I and d2 E AQ), whence

dxq = dxxq + d2 xq = dxxq E I. It now follows that / is left essential in

IQ n A, whence I = IQ D A. Therefore QI = QQQ n A). Now the condi-
tions of Theorem 1.6 of [3], which hold in the situation under consideration,

are equivalent to Q being a right flat A-module, and the inclusion of A in Q

being an epimorphism of rings [4, Theorem 13.10]. Therefore Lemma 1.10 of

[1] applies, and so QI = QQQ n A) = QIQ n QA = QIQ. Thus QI is an
ideal of Q.

We summarize the preceding in the following:

Theorem 2.3. Let A be a nonsingular, finite-dimensional ring, and let Q be

its maximal ring of quotients. For any ideal I of A, let AQ) — [r E A\Ir = 0).

Then there is a one-to-one correspondence between ideals X of Q and ideals I of

A satisfying I = AiAQ)). The correspondence is given by X h> X n A, and I
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