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A NOTE ON COCYCLES OF UNITARY REPRESENTATIONS

W. PARRY AND K. SCHMIDT

Abstract. Given a unitary representation U of a locally compact abelian

group G, we investigate the relationship between two cocycles a,, a2:

Vax = a2+ b for some unitary operator V commuting with U and some

coboundary b. A necessary and sufficient condition is given in terms of

canonical-finite measures defined on G - 1. These results are applied to the

representation of Z defined by the shift of a stationary Markov chain.

1. Introduction. Let G be a locally compact second countable abelian group

and let U be a continuous unitary representation of G in a complex separable

Hilbert space H which does not contain the trivial representation. A cocycle

of U is a continuous map a: G-* H satisfying Ugaig2) — a(gx + g2) +

a(gi) = 0 for all g,, g2 in G. If aig) = U v - v for some v in H and all g in

G, a is called a coboundary. Two cocycles are called cohomologous if their

difference is a coboundary. We shall, in fact, be interested in a more general

relation between cocycles: Given two cocycles ax and a2 for U, when does

there exist a unitary operator V on H such that Vax and a2 are cohomologous

cocycles for UI This problem arose in [1] for the special case of G = Z. There

a numerical invariant (variance) of this relation was introduced. The connec-

tion between the variance and the results presented here are discussed at the

end of this paper. Our first object is to present a necessary and sufficient

condition for a cocycle to be a coboundary. Apparently this theorem is

known to a number of mathematicians, but as far as we are aware, no proof

has been published before.1

2. Coboundaries. In this section the topology and specific nature of the

group (or semigroup) G is irrelevant.

Theorem 2.1. Let U be a unitary representation of the group G in a complex

separable Hilbert space H. A cocycle a of U is a coboundary if and only if a is

bounded, i.e. if supgeG||a(g)|| < oo.

Proof. Clearly every coboundary a for U is bounded. On the other hand, if

a is a bounded cocycle, we define Tg: H —> H by 77' v = aig) + U v for

every g E G, v E H. Each Tg is affine and

TgJg2(v) = Tgi(a(g2) + Ugv) = a(gxg2) + Ug>gv = Tg<gv,
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so that T is an affine representation of G. Since a is bounded, the (weak)

closure K of the convex hull of {a(g), g G G) is weakly compact and

invariant under each T . Moreover, Tg acts distally (in fact, isometrically) on

K with respect to the norm topology. Hence, by the Ryll-Nardzewski fixed

point theorem_[2], there exists a v G K such that Tgv = v and, consequently,

a(g) = v ~ Ugv for all g G G.

Remark 2.2. Theorem 2.1 has an obvious generalisation to bounded

representations on reflexive Banach spaces.

3. The main theorem. Let G be a locally compact second countable abelian

group and let U be a continuous unitary representation of G in a complex

separable Hilbert space H which does not contain the trivial representation.

If G denotes the character group of G, and U = fsx(g)dP(x) lS tne

spectral form of U, where P is a projection valued measure on G, then our

assumption means that P {1} =0 (1 is the identity of G). Let a be a

continuous cocycle of U. We denote by Ha the subspace of H spanned by

[a(g)> ?6G}. The following lemma is contained in [3, pp. 96-97]:

Lemma 3.1. There exists a unique a-finite measure Fa on G — {1} and a

unitary map Wa: Ha -> L2(G - (1), Fa) such that Waa(g)(x) = x(g) ~ 1 for

all g G G, x 6 G.

Lemma 3.2. Let ax and a2 be two cocycles of U, and let F , i = 1, 2, be the

corresponding measures on G — (1} defined in Lemma 3.1. The following

conditions are equivalent:

(1) Fai = Fa.
(2) There exists a unitary operator V on H which commutes with U and which

satisfies Vax = a2.

Proof. Define Ha, i = 1, 2, as before and denote by C/(,) the restriction of

Ug to the invariant subspaces Ha, i = 1,2. We write U® = /gx(g) dP°\x)

for the spectral representation of U(i). As an immediate consequence of

Lemma 3.1, we conclude that the multiplicity of Pw is everywhere < 1.

Assume now that Fa = Fa . The map T: Ha —> Ha given by T = W~' Wa is

unitary. It is easy to see that T can be extended to a unitary operator on the

closed joint linear span of Ha and Ha , and finally to a unitary operator V on

H which commutes with U. Then V satisfies the conditions in (2). The

converse is obvious from Lemma 3.1.

Lemma 3.3. a is a coboundary if and only if Fa is totally finite.

Proof. If Fa is totally finite, a is bounded and hence, by Theorem 1.1, a

coboundary. Conversely, if a is bounded, then a(g) = Ugv — v where

v G Ha and where — v is a fixed point of the mapy -» Ugy + a(g) from Ha

to Ha, for every g G G. So Wav must be the function 1 in L2(G — {1}, Fa),

which implies that Fa is totally finite.

We can now state the main result:

Theorem 3.4. Let G be a locally compact second countable abelian group,

and let U be a continuous unitary representation of G in a complex separable

Hilbert space H. Assume that U does not contain the trivial representation, and

consider two cocycles ax and a2 of U. We define the corresponding measures Fa
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and Fa on G — {1} as in Lemma 3.1. Then the following statements are

equivalent:

(1) There exists a unitary operator V on H such that

Vaxig) = a2ig) + big), gEG,

where b is a coboundary for U.

(2) For any a-finite measure p on G - {1} with F  «: p, / = 1,2, we have

Before we prove this theorem, two remarks are in order.

Remarks 3.5. (1) The operator V can always be chosen to commute with

the representation U.

(2) 5(a,, a2) is independent of the measure p chosen as long as p dominates

both Fa., i = 1, 2.

Proof of Theorem 3.4. Assume (1) holds. Let H denote the closed

subspace of H spanned by { Vaxig), a2ig), gEG). Modifying V if necessary,

we may assume that the spectral measure P in the spectral representation

U = IdX dP ix) of the restriction U of U to H has multiplicity < 1 every-
where. Applying well-known results we can find a unitary map W from H to

L2iG - {1}, p), where p is some a-finite measure on C - [1}, such that

WUgW~x is multiplication by the function x—>x(g) hi L2(C7 — {1}, p). It

follows again from [3, pp. 96-97] that there exist two complex valued

functions /, and f2 on G - (1}, such that WVaxig)i\) = /,(x) • (x(g) ~ 1)

and Wa2ig)ix) = f2ix) • ixig) ~ 1) for all g G G a.e. (x). Since Vax and a2
differ only by a coboundary, the same is true for WVax and Wa2, so that

(/i(x) _ A(x)) " (x(') _ 1) is a coboundary. A straightforward application of
Lemmas 3.1 and 3.3 shows that the measure F given by

^(x)=|/,(x)-/2(x)|2^(x)

is totally finite, so that /, - f2 E L2(G - {1}, p). But we also have

dFa.ix) = |/(x)|2 ^P(x) from the uniqueness of Fa. in Lemma 3.1, which gives

/ dF   \1/2      / dF   \x/l2

![-£) -\-w)   ^=/(i/.i-i/2i)2^</i/1-/2i2^<oo,

and thus proves (2). Conversely, if (2) holds, put p = F + Fa^ and consider

the linear isometries Va : Ha -* L2iG - {1}, p) defined by

(vMsMx) = (dFaiiX)/dpy/2ix(8) - i).

By assumption (2), Vxaxig) = V2a2ig) + b~ijg), gEG, where b_ is a

coboundary for the representationU of G in L2(<7 - {1}, p) given by iUJ)ix)

= X(c?)/(x)- We now define an isometry F: L2(G - {1}, p) -> H such that

FF2 is^ the identity on Hai, and TUgT ~' is the restriction of U onto

TiL2iG - {1}, p)). (That such a  F exists is straightforward.)  TVX is an
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isometry of Ha which can be extended to a unitary operator V on H which

commutes with U, and which satisfies Vax = a2 + b where b is a coboundary.

The proof is complete.

Corollary 3.6. If G = Z (the group of integers), and if ax and a2 are two

cocycles of a unitary representation U of Z in H which does not contain the

trivial representation, we can write (Un= U")

a,(ri) = u, + Uu, + • • • + U"~lu,

for some vectors u, G H, i = 1, 2, and all positive integers n. Let u, stand for

the spectral measures of u, on Z = K = {z: \z\ = 1}, i.e. <<7"w,, «,> = fK\" dut

for i = 1, 2 and all n G Z. Then we obtain dFa(X) = du,(\)/\\ - X\2.

Theorem 3.4 reads now as follows: There exists a unitary operator V on H

(commuting with U) and an element w in H such that u2 = Vux + Uw - w,

if and only if

f((dux\l/2      (du-2V/2\2       dp

for some (and therefore all) measures p » ux, u2 on K.

4. The special case G = Z. Let H be a complex separable Hilbert space,

and let U be a unitary operator on H which does not have 1 in its discrete

spectrum. Consider the representation n —> U" of Z in H, and let u G H. In

[1] the numerical invariant variance o2(U, u) was introduced:

o-2(c/, u)=  lim    \-T \\u + ■ ■ ■ + UNu\\2

1   N
= ||W||2+ 2 Re   lim    77  2 (A - j)(UJu, w>

when these limits exist (Re denotes real part). If 2^>=1<6"I«, w> converges,

then a2(U, u) = \\u\\2 + 2 Re 2°l1<c/Vw> is a numerical invariant of the

relationship ux = Fh2 4- Uw - w. In other words,

Proposition 4.1 [1]. If U is a unitary operator on H with no nonzero fixed

vector, V a unitary operator on H which commutes with U, and ux,u2 and w are

elements of H, then the relation w, = Vu2 + Uw - w implies o2(U, ux)

= o2(U, u2).

We wish to examine the extent to which the converse of this proposition

holds when ux, u2 have continuous densities / with respect to the Lebesgue

measure dX on the circle K.

Theorem 4.2. If U is a unitary operator on H with no nonzero fixed vector,

and if ux, u2G H have spectral measures i?,, u2 with continuous densities /,, f2

on Ksuch that f}12 is differentiable at 1 for i = 1, 2, then o2(U, ux) = o2(U, u2)

implies that there exist a unitary operator V commuting with U, and a w G H

so that u2 = Vux + Uw — w.

Proof. We first note that
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o\U,u,)= lim    ^||«, + --- + U\f

-J&, £/|i + ---+*"|a*i<*)

by a well-known theorem of harmonic analysis. Hence

r//*,\,/a     /^\1/2\2      </A r//,(A),/2-/2(A)1/2\2

f ( M\)i/2 - Mi?'2    /2(i)1/2-/2(A)l/2\2 „

"i\-F-M        +-F7^-)
Differentiability of ^1/2 at  1  ensures  that ifj(X)l/2 - ftil)x/2)/\\ - X\  is

bounded on K for i = 1, 2. Consequently

/4U)  -U) )*<-•
and Corollary 3.6 completes the proof.

5. Representations induced by Markov chains. Let P be an irreducible,

aperiodic, stochastic k X k matrix and let AF = A be the left P invariant

positive vector representing stationary initial probabilities of the Markov

chain. It is well known how a stationary probability m is derived from A and

P, so that the shift transformation F on the space X of sequences of k

symbols (states) preserves the measure m. Let U be the unitary operator on

H = L2iX, m) given by (C//)(x) =/(Fx). The number a\U, u) = a\T, u)

was introduced for special vectors u arising in stochastic processes, namely

the centralized information function. In the case of Markov chains this

function u is a function of two states, i.e. w(x) = w(x0, xx) for any x = (• • • ,

x_x, x0, x,, • • • ) in X. We devote this section to the problem of finding

a2(F, w) and u when u is a function of two states such that ju dm = 0.

Lemma 5.1. For every y ='iyx ■ ■ ■ yk) E Ck (' denotes transpose), we have

where A = (A,, . . . , Xk) and 1 ='(1 • • • 1).

Proof. 1 is the unique column vector corresponding to the eigenvalue 1,

and all other eigenvalues have modulus less than 1 by the Perron-Frobenius

theorem. Hence Ck = Vx® Vc where Vc = {£ G C*: P"£->0}, and Vx

= { ul, jti G C}. Consequently we have, for any y E Ck with_y = p,l + f for

some p E C, $ E Vc, P"y = pi + P"$ -» ul. On the other hand, P"

—»'(A • • • A) so that 2*=lA;_y; = ft. This completes the proof.
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Theorem 5.2. Let u(x) = u(x0, xx) be a function of two states on X with

ju dm = 0. Then u has a Cx'-spectral density f (i.e. du(X) = f(X) dX, where f is

Cx),and

o\T, u) = f(l) = f\u\2 dm+ 2 Re   £ Xj>uCju(i,j)

where c G Vc satisfies

(I-P)c = b,        bj=^PiJu(i,j).

j

Proof. For any n we have

(U"u,uy=ffT"fdm=^u(i,j) ^kj) XjPjjPl, lpkJ

= (a,P"-xb),

where a} = 2,m(J,/)X/>,.,, bk = ~S.xu(k, l)pkJ. Note that 2/1,- = 0, since ju dm

= 0. Evidently, "2kXkbk = ~2.klXku(k, l)pkJ = 0, so that b G Vc. Since for any

element y G Vc, P"y tends to zero exponentially, < U"u, w> —> 0 exponentially

as |«| -^ oo. It is well known that this implies (U"u, u) = fX"f(X) dX where/

is C00. Hence

/(A) = 2 Re   2 X-\axP"'lb)+ I \u\2 dm
n = 1

oo

= (\u\2dm+2ReX-x 2 <a,(X/,)"~l6>
n = 1

= r|«|2 dm+ 2 Re X~x(a, (I - XPyxb)

which makes sense on Vc, since XP is nilpotent there. Substituting X = 1 we

have proved the theorem.
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