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ISOLATED SINGULARITIES OF QUADRATIC
DIFFERENTIALS

ARISING FROM A MODULE PROBLEM

JEFFREY CLAYTON WIENER

Abstract. If R c S are Riemann surfaces, we will say that z0 G S — R

is an isolated point boundary component of R if there exists a neighborhood

U of z0 in S such that U — {z0} c R. We prove that the quadratic

differential   Q(z)dz2  obtained   by   solving   the   module   problem

P(ax.ak) applied to a free family of homotopy classes on R can be

extended to za G 5 so that either Q (z) is regular at z0 or Q (z) has a simple

pole at z0.

Introduction. Let R denote an open Riemann surface. A free family of

homotopy classes on R is a set of nontrivial homotopy classes H(, i

= 1, .. ., k, such that all classes Ht are distinct, no class //, is the class of a

point cycle [3, p. 40], and there exist k Jordan curves A,- G Ht, i = 1,..., k,

no two of which have a common point. Take k nonnegative values ax, . . . , ak

so that ax 4- • • • 4- ak ¥^ 0. Let ?iax, . . . , ak) denote the module problem

associated with a free family of k homotopy classes on R (see Definition 2). J.

A. Jenkins and N. Suita [4] proved that for the module problem

Piax, . . . , ak) there exists a quadratic differential Qiz) dz2 on R with the

property that the trajectories of Qiz) dz2 (see [4, Theorem 1] or Theorem 1

for a precise statement of this result) divide R into a family of doubly-

connected domains Dt, i = 1, . . . , k, such that

jj\Qiu)\dAu^^a2Mj,
R <=1

where Af, is the module of Dr

Let S E R denote a Riemann surface. Suppose that z0 is a point of S — R

such that there exists a neighborhood U of z0 on S with U — {z0} c R. We

will show that Q (z) dz2 can be extended to z0 G S so that either Q (z) is

regular at z0 or Q (z) has a simple pole at z0.

1. Prelimaries. The following three definitions appear in [4, pp. 106-110].

Definition 1. By a free family of homotopy classes H on a Riemann

surface R we mean a set of homotopy classes //,,/'= 1, . . . , k, such that:

(1) all classes H{ are distinct and nontrivial;
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(2) there exist Jordan curves /i, G H,, i = 1, . . . , k, no two of which have a

common point;

(3) no class Z/, is the class of a point cycle [3, p. 40],

Let R denote a Riemann surface and H a free family of Ac homotopy

classes Hx, . . . , Hk on R. Let ax, . . . , ak denote k nonnegative numbers, not

all zero. We now define what we mean by the module problem P(ax, . . . , ak)

on R associated with H.

Definition 2. Let p(u) \du\ denote a conformally invariant metric (linear

density) on R such that, for any rectifiable arc c in the coordinate neighbor-

hood of a local (uniformizing) parameter, /cp(u) \du\ exists. Suppose that

/'/Rp2 dAu exists and is finite. If for each / = I, .... k and every locally

rectifiable h(i) G Ht, /A(/)p(«) \du\ > a,, then the metric p(u) \du\ will be

called admissible for the module problem P(ax.ak). The extremal prob-

lem consists of finding the greatest lower bound M(ax, . . . , ak) of JJRp2 dAu

as p(u) \du\ ranges over all admissible metrics. If the greatest lower bound is

obtained for a particular metric the latter is called an extremal metric for the

problem.

An extremal metric is uniquely determined up to sets of measure zero. For

this reason, if an extremal metric exists, it is called the extremal metric for the

module problem.

Definition 3. By an admissible family of doubly-connected domains

associated with a free family of homotopy classes ZZ,, / = 1, . . ., k, on a

Riemann surface R, we mean a finite set of domains Dj(j), j = 1, . . . , /,

/ < k, i(j) < i(j') for/ < /, 1 < i(j) < k, on R such that:

(1) no two domains Dj(Jyj = 1, . . ., /, have a common point;

(2) a simple closed curve in Di( « separating the boundary components of

£),-(■) belongs to Hi(j. when given the appropriate sense.

For a class //, to which no doubly-connected domain is assigned we may

say that the corresponding domain Z), is degenerate and we assign to £>, the

module zero. With this interpretation we may assume that the index in

Definition 3 is always i = 1, . . . , k.

A bordered Riemann surface R is a one dimensional complex manifold

with boundary dR. A finite Riemann surface is a compact bordered Riemann

surface.

The definition of a free family of homotopy classes on a finite bordered

Riemann surface R [2, pp. 440-441] allows homotopy classes of arcs with end

points on dR. In the course of such a homotopy the end points of the arc in

question are permitted to move on their respective (not necessarily distinct)

boundary components.

Definition 4. By a free family of homotopy classes on a finite bordered

Riemann surface we mean a set of homotopy classes Z/,, / = 1, . . . , Ac, where

Hj, i = 1, . . . ,j, say, are homotopy classes of simple closed curves and H,,

i = j + 1, . . . , Ac, are homotopy classes of arcs joining boundary components

(either set may be empty) such that:

(1) all classes Ht, i = 1, . . . , Ac, are distinct and nontrivial;

(2) no class Ht, i = 1, . . . , Ac, consists of closed curves homotopic to a

point of R;

(3) there exist simple closed curves ht G Ht, i = 1, . . . ,/, and arcs h{ G Ht,
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/ = j 4- 1, . . . , k, on R no two of which have a common point.

We shall say that a quadrangle D on R is associated with the homotopy

class Ht, i = j + 1,. . ., k, if a pair of opposite sides of D lie, respectively, on

dR joined by arcs in //, and if the class of arcs lying in D and joining these

sides is contained in Ht.

By an admissible family of domains D associated with a free family of

homotopy classes Ht, i = 1, . . . , k, on R we mean a family of domains

(quadrangles and doubly-connected domains) each associated with a class //,

and not more than one associated with any such class. Furthermore, we

require that no two domains in the family have a point in common. Finally,

for a class //,,/ = 1, . . . , k, to which no domain has been associated in the

family D, we say that the corresponding domain is degenerate and has

module zero.

The definitions of Piax, . . . , ak) and Af (a,, . . . , ak) are the same as

above.

2. Known results. The following theorem was proven by Jenkins and Suita

[4, Theorem 1].

Theorem 1. Let R denote a Riemann surface and Hjt i = 1, . . . , k, a free

family of homotopy classes on R. Then for the module problem Piax, . . . , ak)

'there exists an extremal metric of the form \Qiu)\x^2\du\ where Qiu) du2 is a

regular quadratic differential on R.

For an admissible family of domains Dt, i = 1, . . . , k, associated with the

free family of homotopy classes,

k

2a2Mj< M iax, . . . , ak),
f-i

where Af, is the module of D{.

The next theorem considers a free family of homotopy classes on a finite

Riemann surface [2, Theorem 1].

Theorem 2. Let R denote a finite bordered Riemann surface on which are

given a finite number (possibly zero) of distinguished points. Let R' be obtained

from R by deleting these distinguished points. Let //,-, i = 1, . . . , k, be a free

family of homotopy classes on R'. Then for the module problem Piax, . . . , ak)

there exists an extremal metric \Q(u)\*/2\du\ where Q(u) du2 is a quadratic

differential on R regular apart from possible simple poles at the distinguished

points.

Provided that neither is R a closed Riemann surface of genus 1 nor is R — dR

a doubly-connected domain (in either case without any distinguished points), the

trajectories of Q(u) du which have limiting end points at its finite critical points,

together with those which pass through distinguished points, divide R into an

admissible family D of domains Dt, i = 1, . . ., k, associated with the given free

family of homotopy classes Ht. If Af, is the module of Dt, then

jj\Qiz)\dAz=Miax,...,ak)=^a2Mj.

R <«1
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3. Result. We now define an isolated point boundary component of an

open Riemann surface.

Definition. Let R be an open Riemann surface. Suppose that there is a

Riemann surface S c R and a point z0 G S - R such that there exists a

neighborhood U of z0 in S so that U - {z0} c R. Then z0 will be called an

isolated point boundary of R.

Let R denote an open Riemann surface and suppose that z0 is an isolated

point boundary component of R. Using Theorem 1 we conclude that there

exists an extremal metric on R of the form |g(u)|1/2|<iw|, where Q(u) du2 is a

regular quadratic differential on R, associated with the module problem

P(ax, . . . , ak) for a free family of homotopy classes Hj, i = 1, . . ., k, on R.

For suitable definition of local uniformizing parameters at z0, S = R u

{z0} is a Riemann surface. We will prove that Q(u) can be extended to

z0 G S so that either Q(u) is regular at z0 on S or Q(u) has a simple pole at

z0 on S.

Let {Rn} denote a canonical exhaustion of 5 with z0 G Z\„ - dRn for each

h. We may assume that Hf, i = 1, . . . , Ac, determines a free family of

homotopy classes Hin, i = 1, . . . , Ac, on each Rn — ({z0} u dRn). Using

Theorem 2, we conclude that there exists a quadratic differential Q„(z) dz2

with at worst a simple pole at z0 such that |(2n(z)|1/2|Jz| provides the extremal

metric for the module problem P(ax, . . . , ak) on Rn.

Let the corresponding decomposition of Rn into an admissible family of

domains associated with Hjn, i = 1, . . . , Ac, be given by Din, i = 1, . . . , Ac,

and let Min denote the module of Din. It is known that for fixed /', Min is

uniformly bounded by tt times the reciprocal of the Huber module on R for

the class Ht (see [3, pp. 42-43]), the latter quantity being finite since Z/; is

nontrivial and not the class of a point cycle.
Let Dj, i = 1, . . . , Ac, denote any admissible family of domains on R

associated with Ht, i = 1, . . . , Ac, and let Af, denote the module of Dr Using

Theorem 1,

k

2a2M,< M(ax,...,ak) < oo.

Since Hin, i = 1, ..., Ac, is a free family of homotopy classes determined by

Hj on R„ - (3Z?„ u {z0}) and Rn+X D R„, we can think of each curve in Hin

as a curve in Hin+X, which in turn is a curve in H,. With this interpretation

(Hin c Hjn+X and #„,!#, f°r fixed 0 it: should be clear that Mjn -> A/,, as

n -» oo. Using Theorem 2,

// \Qn(z)\ dA = 2 a2Min-* 2 a2Mj< oo.

So {jfR\Qn(z)\ dAz} is uniformly bounded.

Let (If, <p) denote a parametric disc on S containing z0, that is, U is an

open subset of S containing z0 and rf> is a homeomorphism of U onto

{\z\ < 1} such that d>(z0) = 0. In U, Qn(z) = h„(z) + B(n)/z, where hn(z) is

regular in U and /3(«) is a complex number. In fact, we can assume that hn(z)

is regular on the closure of U, denoted by CI U.

We will show that a subsequence of {/5(«)} converges. Note that
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So |/5(«)| < il/2ir)f2?\Qnireie)\r dO. Integrating from r = 0 to r = 1,

\P(")\<4l fllQnQe^rdrdff
Z7r Cl u

-j-ji \QnQ)\ dA2< Miax, ..., ak)/2tt < oo.
Z7r Clf

So there exists a subsequence of { Bin)) which converges to B, | B\ < oo. We

continue to designate this subsequence by (Bin)}. Now

// |A„(z)| dA= ff \Q„iz) - Bin)/z\ dAz
Cl V Cl u

< / /\Q„iz)\dAz+ CmC\Bin)\dr d9
Cl u °       °

= fj\Qniz)\dAz+2tr\Bin)\,
ci u

which is uniformly bounded on Cl U. As was done in [4, Lemma 1], we can

conclude that \Qn (z) - yS («)/z| is uniformly bounded on compact subsets of

U.

By Weierstrass's theorem, there exists a subsequence {Qn^y{z)) of {(?„(z)}

such that Q„,sy(z) — ̂ («(j))/z converges to a regular function/(z) on U. So

Qn(s)(z) -»/(z) + fi/z = Q(z) on L7- Thus, either Qiz) is regular in U

i B = 0) or (2(z) is regular in U — {z0} and has a simple pole at z0 G S.
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