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PARTIAL MIELNIK SPACES AND

CHARACTERIZATION OF UNIFORMLY

CONVEX SPACES

A. R. BLASS AND C. V. STANOJEVIC

Abstract. We characterize uniform convexity of normed linear spaces in

terms of a functional inequality generalizing Clarkson's inequality for L

spaces. This inequality can be interpreted as saying that the unit sphere of

the space carries a structure slightly weaker than a probability space in the

sense of Mielnik. From this point of view, our result is analogous to an earlier

characterization of inner product spaces. We also investigate briefly the

abstract concept of partial probability space suggested by the main result.

1. Introduction. The classical approach to the foundations of quantum

theory, pioneered by Birkhoff and von Neumann [1], sought axioms for

quantum logic all of whose realizations could be represented by orthogonal

projection operators in suitable Hilbert spaces. B. Mielnik [4] objected that

this program would not fully justify the use of Hilbert spaces in quantum

theory, for that theory deals not only with the yes-no measurements consid-

ered in quantum logic, but also with statistical predictions. Accordingly, he

introduced the following concept of probability space, and showed that not all

of its realizations could be obtained from Hilbert spaces in the usual quantum-

theoretic manner.

A Mielnik space iS,p) consists of a nonempty set S together with a function

p from SXS into the closed interval [0,1] of the real line satisfying the

following three axioms.

(A) pia, b) = 1 if and only if a = b.

(B) pia, b) = pQ>, a). To state the last axiom concisely, we first define two

members a and b of 5 to be orthogonal if pia,b) = 0. A maximal set of

pairwise orthogonal elements of 5 is called a basis of S. The existence of bases

is an easy consequence of Zorn's lemma.

(C) For any a E S and any basis fl of S, ^lbeB p(a,b) = 1, where the

(possibly infinite or even uncountable sum) is interpreted, as usual, as the

supremum of all its finite partial sums.

The elements of S are to be viewed as possible states of a physical system,

and pia, b) as the probability that a system is found to be in state b after being

known to be in state a. In the usual quantum-mechanical formalism, S is the

set of unit vectors of a Hilbert space (modulo identification of a vector a with

all its scalar multiples \a, \\\ = 1) and pia, b) = \(a,b)\ . A basis for an S of

this sort is just an orthonormal basis for the Hilbert space. Mielnik [4] showed
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that, in any probability space (S,p), all bases have the same cardinality, called

the dimension of (S,p). Thus, the dimension of the Mielnik spaces used in

quantum mechanics is the same as the dimension of the associated Hilbert

space.

There is another way to associate a Mielnik space with any given inner

product space A. Let S be the unit sphere of A (without identifying vectors

that differ by a phase factor), and let

(1) p(a,b) = \\\a + b\t

Although only the norm of A, not the inner product, appears explicitly in the

definition of (S,p), the fact that the norm is associated to an inner product is

used in verifying that (S,p) satisfies Mielnik's Axiom (C) (the other two axioms

being immediate). Indeed, the only vector orthogonal to a in (S,p) is —a, so

(C) reads

(2) |lk + fell2 + ilia - fe||2 = 1,

which follows from the parallelogram law. Notice that (S,p) has dimension 2;

among these spaces are Mielnik's examples of Mielnik spaces not obtainable

from Hilbert spaces in the usual quantum-mechanical way.

In [5] it was shown that formula (1) defined a Mielnik space structure on the

unit sphere of a normed real linear space A if and only if A is an inner product

space. In [6] this result was generalized to show that if S is the unit sphere of

a normed real linear space and if (S,p) is a Mielnik space of dimension 2 in

which p(a,b) is any reasonable function of ||a + fe||, then A is an inner product

space. To state this result, and our later results, precisely, we introduce, as in

[6], the class

S7 = {/I/: [0,2] -» [0,1],/continuous and
(3)

strictly increasing,/(0) = 0,/(2) = 1}.

Then Theorem 3.1 of [6] asserts that a normed linear space A is an inner

product space if and only if its unit sphere S, equipped with some p of the form

p(a,b) = f(\\a + fe||),/ G % is a Mielnik probability space (necessarily of

dimension 2).

In this paper, we shall introduce the notion of a partial Mielnik space and

use it to obtain a characterization of uniformly convex spaces analogous to the

characterization of inner product spaces just quoted. We are not concerned

with the axiomatic foundations of quantum theories, but rather with some

important mathematical implications of Mielnik's work [4].

2. Partial Mielnik spaces. A partial Mielnik space is a pair (S,p), where 5 is

a nonempty set and p maps S X S into [0,1] in such a way that Axioms (A)

and (B) for Mielnik spaces and the following weakened form of Axiom (C)

hold.
(C*) For any a G S and any basis B of S, ^of=Bp(a,b) < 1. Partial

Mielnik spaces abound, for any nonempty subset of a Mielnik space is a

partial Mielnik space. To see this, simply observe that a basis for such a subset

is a subset of a basis for the whole Mielnik space. It is also easy to construct
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partial Mielnik spaces which are not subspaces of any Mielnik space. We shall

consider later the problem of finding conditions under which a partial Mielnik

space can be embedded in a Mielnik space.

Although there is no immediate physical interpretation of (C*), it is related

to the behavior of quantum-mechanical transition probabilities between states

of an unstable system. If we let 5 consist of the states of such a system, say a

neutron, and if we let pia, b) be the probability that a neutron known to be in

state a at a certain time is found to be in state b ten minutes later, then Axiom

(C) is not satisfied but Axiom (C*) is, because there is a nonzero probability

that the neutron will, during the ten minute interval, decay into a proton, an

electron, and an antineutrino. Notice the relation between this observation

and the remarks in the preceding paragraph: Axiom (C) would hold if we

added to 5 all the states of the systems into which the neutron can decay.

Notice also that our iS,p) fails to be a partial Mielnik space because the "if"

part of Axiom (A) is false (and Axiom (B) expresses the rather strong

assumption of time-reversal invariance). It would perhaps be reasonable to

weaken Mielnik's axioms further by omitting the "if" part of (A) and possibly

also omitting (B). This would make no difference in our main result, the

characterization of uniformly convex spaces below, since the additional

hypotheses used there are sufficient to imply the omitted axioms.

3. Uniform convexity. A normed real linear space A is uniformly convex if for

every positive e there is a positive 8 such that, for x, y EN,

\\x\\ < I,    ILvll < 1,    and    \\x-y\\ > e imply \\l2ix + y)\\ < 1 - 8.

An equivalent condition is that, for sequences {xn}, {yn} of vectors in A of

norm < 1, if linv^ ||£(x„ + yn)\\ = 1, then lim^^ \\x„ - y„\\ = 0. In the
paper [2] in which he introduced the concept of uniform convexity, Clarkson

showed that the classical Banach spaces Lp (1 < p < oo) are uniformly

convex. For p > 2, the proof is based on the inequality

(4) ||(a + b)/2\\p + IK* - b)/2\\p < \\\a\\p + J\\b\\p,

where the norm is the Z^-norm. When a and b are on the unit sphere, the right

side of (4) reduces to 1, and we obtain Axiom (C*) for the probability function

\\(a + b)/2\\p, a function for which Axioms (A) and (B) are easily seen to hold

as well. Thus, Clarkson's inequality (4) implies that the unit sphere of L is a

partial Mielnik space with the above probability function. Note that, when

p = 2, we obtain again the probability function (1) of §1. For other values of

p, this partial Mielnik space is not a probability space because L is not a
Hilbert space.

To relate uniform convexity of a space A to partial Mielnik space structures

on its unit sphere S, we need the following characterization of uniformly

convex spaces.

Lemma. A normed real linear space A is uniformly convex if and only if, for all

sequences {a„}, {bn} of unit vectors,

lim \\an + 6-|| =2    implies    lim \\a„ -6,11 = 0.
n-»oo n->oo
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Proof. This lemma differs from the remark immediately following the

definition of uniform convexity (whose proof is easy and may be found in [3])

only in that a„ and bn have length exactly 1 rather than < 1. Thus, the "only

if" part of the lemma is clear. To prove the converse, assume the stated

condition and suppose x„, y„ are vectors of length < 1 with lim,,.^ ||x„ + y„||

= 2. From this and the triangle inequality, we obtain lim,,..^ ||x„||

= limn^00 ||y„|| = 1. So we may assume none of the x's or y's is 0, and we

may define a„ = xj\\xn\\ and fe„ = y„/||y„||. Now

\\xn-a„\\ = ||(||x„||-l)aj| = 1 -||x„||^0    as n -> oo,

and similarly ||y„ - fe„|| —> 0 as « -> oo. Then

\\a„ + fejl > \\x„+y„\\ - ||x„ -a„\\- \\y„ - tn|| -> 2,

and as ||an + fe„|| < 2 for all «, we have lim„^00 ||a„ + fejl = 2. By hypothe-

sis, this implies ||a„ — fe„ || —» 0 and thus

Ik - y„II < Ik -a„\\ + \\an - fe„ || + ||fe„ -ym\\-> 0.

Half of the following theorem follows easily from the preceding lemma . We

remind the reader that % was defined in § 1 to be the class of continuous and

strictly increasing functions from [0,2] to [0,l].with/(0) = 0,/(2) = 1.

Theorem. Let N be a normed real linear space, and let S be its unit sphere, N

is uniformly convex if and only if, for some f G % the probability function

p(a, b) = f(\\a + fe||) makes S a partial Mielnik space.

Proof. If. We use the criterion for uniform convexity given by the lemma.

Suppose an and fe„ are unit vectors such that ||a„ + fe„|| —> 2 as « —» oo. By

Axiom (C*) for p, we have

(5) /(lk + M)+/(lk-M)<i,
for it is easy to check, using the definition of % that the bases of (S,p) are the

sets {fe, -fe) for arbitrary fe G 5. Taking the limit of (5) as n -» oo and using

the continuity of / we find

/(lim|k + fe„||)+ lim/(Ik-M) < !•
\/i—*oo /        n—>oo

But lim,,.^ ||an + fejl =2 and/(2) = 1; since/is nonnegative, we obtain

(6) lim/(|k-fe„||) = 0.
v   ' n—>oo

Finally, as/-1 is continuous (for/is continuous and strictly increasing), we

deduce lim„^00 ||a„ - fe„|| = 0.

Before proving the converse, we point out that the preceding argument used

far less than the full strength of the hypotheses. We did not use Axioms (A)

and (B) for p, and the appeal to the monotonicity of / at the last step could

have been avoided; we only needed that f(t) = 0 implies t = 0. (Granting

this, we obtain from (6) that no subsequence of (||a„ - fen||) can have a
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nonzero limit. Since this sequence lies in the compact set [0,2], it must

converge to 0.) On the other hand, if we are willing to use the full strength of

strict monotonicity, then, as is easily seen, we can weaken the continuity

assumption to require continuity of/only at 2.

Only if. We are given a uniformly convex space A, and we seek / E 9 such

that pia, b) = fi\\a + 6||) makes the unit sphere 5 a partial probability space.

Regardless of the choice off, Axioms (A) and (B) will hold. (The "only if" part

of (A) depends on the strict convexity of A, an immediate consequence of

uniform convexity.) Thus, the problem is to find /£ J such that (C*) holds,

i.e., for all a, b E S,

(7) /(l|a + 6||)+/(||a-6||)< 1.

It suffices to find / and g in f such that, for all a, b E S,fi\\a + 6||)

+ gi\\a - 6||) < 1, for then min{/,g} is in f and satisfies (7). We select

fit) = t/2 and therefore seek g£f such that, for all a, b E S, gi\\a - b\\)
< 1 - |||a + 6||. For any t E [0,2], define

hit) = sup{||a + b\\:a,b E S, \\a - b\\ > t).

We thus require (as g is to be monotone) git) < 1 - 6(f)/2 for all t E [0,2].

It is clear that h is monotone nonincreasing and that 6(0) = 2. The fact that

A is uniformly convex shows that hit) < 2 for all t # 0. Also, the strict

convexity of A implies that 6(2) = 0, for ||a — 6|| can equal 2 only when

a = —b. Finally, the uniform convexity of A implies that 6 is continuous at 2.

We would like to set g(f) = 1 - 6(f)/2, but it is not clear that this function is

continuous or strictly monotone. It does, however, satisfy the hypotheses of

the following lemma, so the proof of the Theorem will be complete once the

lemma is established.

Lemma. Suppose g maps [0, 2] into [0, 1], is monotone nondecreasing, takes the

value 0 at 0 and nowhere else, maps 2 to I, and is continuous at 2. Then there is

a gx E <5such that gxit) < git) for all t E [0,2].

Proof. Define g, by the Riemann-Stieltjes integral

S>W=Xlo2^>W-
We are thinking of g as describing a distribution of unit mass on the interval

[0,2]; git) = mass on [0,?]. The jumps of g correspond to discrete mass points.

The hypotheses on g say that there is no (discrete) mass at 0 or at 2 and that

every nondegenerate interval of the form [0,/] contains some mass. Let us take

this mass distribution and smear it, distributing the mass located at u

uniformly over the interval [u, 2]. The resulting distribution, described by g,,

no longer has any discrete concentrations of mass because these have been

smeared out. (It is essential here that there was no discrete mass at 2.) So g, is

continuous. Also, every nondegenerate interval now contains some of the mass

originally located in [0,t] for small nonzero /. So gx is strictly increasing.

g,(0) = 0 and gi(2) = 1 are clear. Finally g,(f) is clearly < git) (since mass
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was moved only to the right). This completes the proof of the Lemma and thus

the proof of the Theorem as well.

4. Additional remarks. The comments we made after the proof of the "if"

part of our Theorem show that the Theorem remains true if the class 3F is

replaced by either

5J = {/|/: [0,2] -» [0,1],   /strictly increasing,

continuous at 2,/(0) = 0,   /(2) = 1}

or

^2 = {/I/: [0-2] -* [0,1],/continuous,

/(2) = 1, and/(0 = 0 iff r = 0}.

Furthermore, the Theorem remains true if Axioms (A) and (B) are omitted

from the definition of partial Mielnik spaces. Although this observation

permits us to redefine partial Mielnik spaces so as to include examples like the

one discussed in the last paragraph of §2 (where the "if" part of (A) was false

and (B) not immediately clear), the added generality would be irrelevant in our

Theorem as both the "if" part of (A) and (B) hold for any p of the assumed

form /(||a + fe||), / G § (or <SX or f2). Notice, however, that the Theorem

remains true if we put the inequality p(a, fe) > /(||a + fe||) in place of equality,

and then (B) no longer follows.

Another proof of the last lemma in §3 was pointed out to us by B.

Baishanski. One expresses the given g as the sum of a continuous nondecreas-

ing function and an infinite series of nondecreasing step functions each having

only finitely many jumps. Since the series converges uniformly, one obtains the

required gx by replacing each of these step functions by a continuous piecewise

linear minorant having the same value at 2. (Again it is essential that g has no

jump at 2.)

We close this paper with a brief and incomplete discussion of conditions

under which a partial Mielnik space (S,p) is a subspace of a Mielnik space.

We define orthogonality and bases exactly as in probability spaces. It is no

longer true, in general, that all bases have the same cardinality. Note, however,

that in the spaces (S,p) occurring in the Theorem of §3, all bases have

cardinality 2, for a and fe are orthogonal iff a = —fe. If a G S and B C S, we

define

p(a,B) = p(B,a) =   2 p(a,b),
b£B

and if C C S also,

p(B,C) =   2 p(b,C) =   2 p(B,c) =22 Pib,c).
b£B cEC beBcSC

Thus, for example, (S,p) is a Mielnik space iff p(a, B) = 1 for all a G S and

all bases B of S. For orthogonal systems (i.e. sets of pairwise orthogonal

elements) B and C, we write B < C to mean that p(b, C) = 1 for all fe G B.

Axiom (A) guarantees that < is reflexive; transitivity of < follows immedi-
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ately from the following condition (D) which holds in some, but by no means

all, partial Mielnik spaces:

(D) If fl < C (where fl and C are orthogonal systems) then, for all

a E S,pia,B) < pia,C).

Proposition 1. If the partial Mielnik space iS,p) is a subspace of a Mielnik

space iS,p), then iS,p) satisfies condition (D).

Proof. Suppose a E S and fl < C in S. As an orthogonal system in S, C

can be extended to a basis C in S. Since fl < C, we have, for each bEB,

1 =/>(6,C)=X6,C) <Pib,C)= 1,

which can hold only if p(b, C - C) = 0. Thus, fl U (C — C) is an orthogonal

system in S and may be extended to a basis fl. Then we have both

1 = pia, C) = pia, C) +pia,C- C)

and

1 = pia,fl) > pia,fl) + pia, C - C),

so pia, fl) < pia, C), and condition (D) holds.

Condition (D), which we have just shown to be necessary for embeddability

into a Mielnik space, in some circumstances is also sufficient. We prove here

just one result of this sort; the additional hypothesis about the bases is

unnecessarily restrictive, but it holds in the spaces iS,p) considered in §3.

Proposition 2. If condition (D) holds in a partial Mielnik space iS,p) all of

whose bases have the same finite cardinality n, then iS,p) is a subspace of a

Mielnik space (o/ dimension 2n).

Proof. We show first that, under these hypotheses, the relation <, restrict-

ed to bases, is symmetric and, therefore, an equivalence relation. For, if

fl < C are bases, then, as fl has n elements, n = piB,C) = 2cec^(c'^)-

This sum has n terms, each < 1 by Axiom (C*); for the sum to be n, all terms

must be 1, so C < fl.

For each equivalence class [fl] = {C|C a basis, C < fl} of bases, add n new

elements [fl], (1 < i < n) to 5. On the resulting set S, define^ by

pia, b) = pia, b) if a, 6 e S,

pia,[B]j) = pi[B]j,a) = n~l(l ~ p(a,B)) for a E S, I < i < n,

i*[B]i,[C]j) = n~2piB,C) if [fl] # [C],
pi[B]j,[B]j) = 0 if i * j,

pi[B]j,[B]j) = 1.
It is entirely straightforward (though tedious) to verify that iS,p) is a

probability space. Its bases have the form fl U {[fl],|l < i < n) where fl is a

basis for S, so S has dimension 2n.
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