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THE NUMERICAL RANGE OF AN
UNBOUNDED OPERATOR

M. J. CRABB

Abstract.   The numerical range of an unbounded linear operator on a

complex Banach space is the whole complex plane.

Let X denote a Banach space over C, A" the dual space of X, S

= (x G X: \\x\\ = 1}, and let T be an unbounded operator defined on the

whole of X. Given x G S, let V(T,x) = {/(Fx):/ G A", ||/|| = f(x) = 1}.

The numerical range V(T) is defined by

V(T) = U{V(T,x): x G 5}.

J. R. Giles and G. Joseph [2] prove that the semi-inner-product numerical

range W(T) has a certain density property, and B. Bollobas and S. Eldridge

(preprint) prove that W(T) is dense in C. These imply the corresponding

results for V(T).

Theorem. V(T) = C.

We use the following slight extension of Theorem 1 of [1].

Lemma. Let x, y G X, and operator R be defined on lim(x,y). Suppose that

||x + Ry\\ < ||x|| - (8||Fx|| ||y||)1/2. Then U{V(R,z): z G S D lim(x,y))con-

tains 0 as an interior point.

Proof. There is a continuous linear operator Rx on X such that R = Rx on

lim(x,y). The proof in [1] shows that 0 is an interior point of U{V(Rx,z): z

ESfl hm(x,y)} which gives the result.

Proof of Theorem. As in [2], there is a sequence (xn) in X such that xn —> 0

and Txn —> — x # 0. Choose x„ such that

||x+FxJ|<||x||-(8||Fx||||x„||)1/2.

By the Lemma 0 G V(T). For any a G C, F - a I is unbounded, so 0

G V(T - al). Hence a G V(T).

The Lemma implies that, for T defined on a subspace of X with V(T) G R,

where we take   V(T) = U{K(F,x): x G 5, Tx defined }, we have  ||7x||

< Af||x|| ||F2x|| with M = 8. A result of Hille [3] implies that this holds with

M = 2, and an example of Kolmogorov [4] (differentiation on Lx (R)) shows

that 2 is the best constant.
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