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ON A THEOREM OF BRICKMAN-FILLMORE

ANTONIO HWANG

Abstract. Let V be a finite dimensional vector space over an arbitrary

field. We show that if dim V < 3 and if A, B and C are pairwise commuting

linear transformations on V such that every subspace invariant for both A

and B is also invariant for C, then C is a polynomial in A and B. (Brickman

and Fillmore proved that if B = 0 then this statement is true for any finite

dimensional vector space V.) An example shows that this is not true for

dim V > 3.

In [1] L. Brickman and P. A. Fillmore proved that if A and fl are commuting

linear transformations on a finite dimensional vector space over an arbitrary

field and if every subspace invariant for A is also invariant for fl, then fl is a

polynomial in A. Peter Fillmore suggested the following question (conveyed to

me by Constantin Apostol):

If A, B and C are pairwise commuting linear transformations on a finite

dimensional vector space V over an arbitrary field and if every subspace

invariant for both A and fl is also invariant for C, then is C a polynomial in

A and fl?
We shall prove that the answer to this question is true if the dimension of

V is not more than 3 and false otherwise.

Suppose the dimension of V is 2. If A has no nontrivial invariant subspace

then C is a polynomial in A by the Brickman-Fillmore result. If A is a scalar

multiple of the identity then C is a polynomial in fl. Similar statements can

also be made for fl. Finally, if A has a 1-dimensional eigenspace then A, B and

C can be represented by upper triangular matrices relative to a fixed basis. By

subtracting appropriate scalar multiples of the identity from A, fl, and C, we

may assume that:

Since A and C commute we have ax c2 = cxa2. Thus (i) ax ¥= 0 implies

icx/ax)A = C, (ii) a2 ¥= 0 implies ic2/a2)A = C and (iii) ax = a2 = 0 implies

C is a polynomial in fl.

The proof for the case when the dimension of V is 3 is obtained by

considering the possible representations of A given by the rational decompo-

sition theorem. We omit the details.

Finally, let
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An easy computation shows that

AB = BA = AC = CA = FC = CB = 0   and   ^2 = F2 = C2 = 0.

It follows from these that C is not a polynomial in A and Z?. To show that

every subspace invariant under A and B is also invariant under C it is

sufficient to consider cyclic subspaces (that is, subspaces generated by the

action of A and B on a single vector). An easy calculation shows that if x is

any vector, then Cx is a linear combination of Ax and Fx. This example can

be extended to the case dim V > 4 via direct sums.
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