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ON A FIXED POINT PROBLEM OF D. R. SMART

IRA ROSENHOLTZ

In his book, Fixed point theorems, D. R. Smart poses the following problem

which he says appears to be open: "Does every shrinking (i.e. contractive)

mapping of the closed unit ball in a Banach space have a fixed point?" We

answer this question in the negative by exhibiting a contractive mapping from

the closed unit ball in a Banach space to itself which has no fixed point.

Furthermore, our mapping has the additional properties that it is affine, a

homeomorphism onto its image, and its inverse is Lipschitz.

Recall that C0 is the Banach space of all real sequences x = (xx,x2,...)

such that Hmn^00jc„ = 0, and whose norm is defined by ||jc|| = max(|x„|}.

We define our function as follows: Let ax,a2, ... be any sequence of

positive real numbers such that (i) each ay is less than 1, and (ii) the sequence

of partial products, pn = Ti"= x aj, is bounded away from zero. (One such

sequence is defined by an = (2n + l)/(2" + 2).) Now, if x = (xx,x2, ...)

G C0, we let f(x) = (l,axxx,a2x2,a3x3,...). Then clearly if ||x|| Si 1,

\\f(x)\\ 2i 1. (In fact, ||/(x)|| = 1, if \\x\\ 2i 1.) Thus/takes the unit ball in C0

to itself. That / is affine (i.e. that f(tx + (1 - t)y) = tf(x) + (1 - t)f(y)) is
trivial. Next, notice that

\\f(x) -f(y)\\ = max{|a„(x„ - y„)|} = aj\xj - yj\ ,

for some / and if x ¥= y,

aj\xj - yj\<\Xj - yj\= max{|x„-y„|) = ||jc - y\\.

Therefore, since \\f(x) - f(y)\\ < IU — y\\ if jc ¥= y,/is contractive.

Finally, suppose x = (xx, x2,...) is a fixed point of / Then

xx = I, x3 = a2x2 = ax a2,

x2 = axxx = ax,      x4 = a3x3 = aia2a3, etc.

and these numbers are bounded away from zero by the way that the sequence

ax, a2, ... was chosen. Thus, x is not in C0 and the proof is complete.
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