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ON ZZ-CLOSED SPACES

JAMES E. JOSEPH

Abstract. A characterization of //-closed spaces in terms of projections is

given along with relating properties.

Introduction. The primary purpose of this paper is to give a characterization

of ZZ-closed spaces which is an analogue to the following theorem for

compact spaces: A space X is compact if and only if the projection from

X X Y onto Y is a closed function for every space Y [9, p. 21].

Following the notation of [6], we utilize the notion of 0-closed subsets of a

topological space from [11, p. 103] and our characterization is stated as

follows:

Theorem. A Hausdorff space X is H-closed if and only if for every space Y,

the projection from X X Y onto Y takes 0-closed subsets onto 0-closed subsets.

Throughout, cl(AT) will denote the closure of a set K.

Preliminary definitions and theorems.

Definition 1. A net in a topological space is said to 0-converge (0-

accumulate) [6, Definition 3] to a point x in the space if the net is eventually

(frequently) in cl( V) for each V open about x.

Definition 2. A point x in a topological space A is in the 0-closure [11, p.

103] ofasetKcX (0-cl(K)) if cl(F) n K j- 0 for any V open about x.

Definition 3. A subset A" of a topological space is 0-closed [11, p. 103] if it

contains its 0-closure (i.e., 0-cl(Z<") c K).

The following theorems give some parallels of properties of closure and

closed sets in a topological space for 0-closure and 0-closed sets in the space

and some relationships between these notions. The proofs of these theorems

are straightforward and are omitted [11, Lemmas 1, 2, 3].

Theorem 1. A point x in a topological space is in the 0-closure of a subset K

if and only if there is a net xa in K which 0-converges to x (xa-r-> x).

Theorem 2. In any topological space

(a) the empty set and the whole space are 0-closed,

(b) arbitrary intersections and finite unions of 0-closed sets are 0-closed,

(c) cl(Z<) c 0-cl(K)for each subset K,

(d) a 0-closed subset is closed.
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Example 1. Each nonempty countable subset of the set of reals endowed

with the cocountable topology is closed but not ^-closed.

Main results. There are several characterizations of //-closed spaces in the

literature [2, p. 145], [1, p. 97]. For a definition, we use the following:

Definition 4. A Hausdorff space X is //-closed if every open cover fcf of X

contains a finite subcollection % such that (cl(K): V G % } covers X.

We also make use of the following theorem immediately gotten from [11,

Theorem 2]:

Theorem 3. A Hausdorff space is H-closed if and only if each net in the

space has a 9-convergent subnet.

Definition 5. A function g: X —> Y is weakly continuous [6, Theorem 6] if

for each net xa in X such that xa -» x, the net g(xa)^> g(x).
6

Definition 6. A function g: X -+ Y has a strongly-closed graph [6, p. 473] if

for each (x,y) E (X X Y) — G(g), there are open sets U and V about x and

y, respectively, such that (U X cl(V)) n G(g) = 0.

It is known that a function g: X —> Y has a closed graph if and only if

whenever a net xa —> x in X and g(xa) —>y in Y, it follows that g(x) = y [13,

p. 115]. We have the following similar result for functions with strongly-

closed graphs.

Theorem 4. A function g: X —» Y has a strongly-closed graph if and only if

whenever a net xa —> x in X and g(xa)^>y in Y, it follows that g(x) = y.
0

Proof. Let g have a strongly-closed graph and let xa be a net in X

satisfying xa -> x and g(xa)^y. Then (V X cl(W)) n Gig) ¥- 0 for V, W

open about x and y respectively. So, (x, y) G Gig) and g(x) = y. For the

converse, let ix, y) E iX X Y) - Gig). Then y =f= gix), and there is no net

xa in X satisfying xa -» x and g(xa)-»y. If (K0 X cl( W£)) n Gig) ^ 0 for

each pair Va, Wi of sets open about x and y respectively, choose (xo£,

g(xof)) G iV„ X cl(W{)) n C7(g). The ordering of { Va X cl( Wj): k„, 1F£ open

about x and y respectively} by inclusion renders (xo£, g(xafj) a net with

x„£ -» x and g(xa£)—>y, a contradiction. Therefore, there are sets K, W7 open

about x,y, respectively, and satisfying (K X cl(W)) n C7(g) = 0; and (7(g)

is strongly-closed. This completes the proof.

We may use the characterizations above to give a proof of the following

theorem which is different and shorter than that given in [6]. If (xa, D) is a

net in a space X, we will denote {xa: a > p) by F^ for each p E D. Using

this notation it is clear that xa 0-converges (^-accumulates) to a point x E X

if for each open V about x, there is a p. E D satisfying (each p. E D satisfies)

F^ c cl(F) (FM n cl(K) =fc 0). Let S denote a class of topological spaces

containing the class of Hausdorff completely normal and fully normal spaces.

Theorem 5. A Hausdorff space Y is H-closed if and only if for every space in

class S , each g: X —» Y with a strongly-closed graph is weakly continuous.

Proof. Let Y be //-closed, let X be any space and let g: X -» Y have a

strongly-closed graph. Let xa —> x in X. Then g(xa) is a net in Y, so there is a
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subnety^g of xa andy G Y with g(yp)-*y. By Theorem 4, g(x) = y. Let V be

a regular open set about g(x). If g(xa) is not eventually in cl( V), there is a

subnet z^ of xa such that g(z^) 0-converges to some z G Y — V since Y — V

is a regular closed set and thus ZZ-closed. This then forces g(x) G Y — V, a

contradiction. So g(x0)—>g(x). For the converse, let x0 G Y and let (xa, D)
B

be a net in Y — {x0} with no 0-accumulation point in Y — {x0}. Let

A = {xa: a G D) u {x0} with the topology generated by {{xa}: a G D)

and {T u {-*o}: p: G D) a.s the basic open sets. A is a Hausdorff door space

[7, p. 76] and is easily shown to be in class ? . Let i: X ~* Y be the identity

function and let (x,y) G (X X Y) — G(i). If x ¥= x0, then {x} is open in A;

choose V open in Y about y with x G cl( V). Then, clearly, ({x} X cl( V)) n

G(i) = 0. If x = x0, then y ^ x0; so there is a p. G D and a V open in F

about y satisfying x0 G cl(K) and T^ n cl(K) = 0. So A — cl(F) is open in

A about x and [(A - cl(F)) X cl(K)] n G(i) = 0. Thus, i has a strongly-

closed graph and is weakly continuous. Consequently, if V is open about x0,

there is a /x G Z) satisfying F^ c cl( F) [8, p. 44], so xa —> x0. This completes

the proof.

In [6, p. 474], an example is given to show that the strongly-closed graph

condition in Theorem 5 cannot be relaxed to a closed graph condition. This

example was extracted from [12] and is not described explicitly in [6]

presumably because of its somewhat complicated description. We now exhibit

a space with a simpler description which meets the purposes of the example in

[6].
Example 2. Let A be the set of positive integers and let A = {0} u [ 1, oo)

with the topology generated by the usual subspace topology of the reals on

[ 1, oo)  and {{0} u Uf=m(rc, k + 1): m G A} as basic open sets.

(a) The space A is Hausdorff.

(b) The space X is not compact since A is an infinite subset of A without

accumulation points.

(c) The space A is ZZ-closed.

(d) The function g, from (1 + l/n: n£JV)u(l) with the subspace

topology, defined by g(l) = 1 and g(l + l/n) = n for each n G N has a

closed graph which is not strongly-closed. Also, g is not weakly continuous at

1.

In [3], [4], [5], and [10], theorems of the following form are proved; A has

property A if and only if the projection it : X X Y -» Y is closed for each

space Y in a certain class. The next four theorems and main results give an

analogue of this form for ZZ-closed spaces.

Theorem 6. If X is an H-closed space then the projection from X X Y onto

Y takes 0-closed subsets onto 0-closed subsets for any space Y.

Proof. Let A be ZZ-closed, let Y be any space and let K c X x Y be

0-closed. Lety G 0-cl(iry(K)). There is a net (xa,ya) G K withya-*y. There
6

is a subnet x    of xa and x G X with xa -»x. So (xa , ya )->(x, y) and (x,

y) G 0-cl(ZC) C K. Thusy G iry(K).

Theorem 7. If X is a Hausdorff space and the projection from X X  Y onto Y
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takes 0-closed subsets onto closed subsets for every space Y, then X is H-closed.

Proof. Let (y0, D) be a net in X with no ^-convergent subnet and let

y0 G X. Let Y = {ya: a E D) u {y0} with the topology generated by {{ya}:

a E D) and {F^ u (y0}: M e ^} as Das'c open sets. Let K = {(ya, ya):

a £ /)} and let (a, b) E iX X Y) - K. Then a ^ y0 and a ^ b. Let V be

open about a satisfying {b, y0} c F - cl(K) and FM c Y - cl(K) for some

p E D. Then F - cl(K) is open and closed in Y and so V X (F - cl(K)) is

open about (a, 6). Also,

cl[F X {Y - cl(K))] n A- = (cl(K) X (Y - cl(K))) nf(=0.

Thus, ia, b) G #-cl(A') and K is 0-closed. it iK) is therefore closed in Y and

y0 G cl(77>,(A')). This is a contradiction establishing the result.

Combining Theorems 6 and 7, we get the promised result.

Theorem 8. A Hausdorff space X is H-closed if and only if for every space Y,

the projection from X X Y onto Y takes 0-closed subsets onto 9-closed subsets.

Noting that the space Y used in the proof of Theorem 7 is a Hausdorff

door space and is in the class ?> whose description precedes Theorem 5, we

may state the following theorem.

Theorem 9. A Hausdorff space X is H-closed if and only if for every

Hausdorff door space ispace in class S ) Y, the projection from X X Y onto Y

takes 9-closed subsets onto 9-closed subsets.
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