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ON H-CLOSED SPACES
JAMES E. JOSEPH

ABSTRACT. A characterization of H-closed spaces in terms of projections is
given along with relating properties.

Introduction. The primary purpose of this paper is to give a characterization
of H-closed spaces which is an analogue to the following theorem for
compact spaces: A space X is compact if and only if the projection from
X X Y onto Y is a closed function for every space Y [9, p. 21].

Following the notation of [6], we utilize the notion of #-closed subsets of a
topological space from [11, p. 103] and our characterization is stated as
follows:

THEOREM. A Hausdorff space X is H-closed if and only if for every space Y,
the projection from X X Y onto Y takes 0-closed subsets onto -closed subsets.

Throughout, cl(K) will denote the closure of a set K.

Preliminary definitions and theorems.

DEFINITION 1. A net in a topological space is said to 8-converge (8-
accumulate) [6, Definition 3] to a point x in the space if the net is eventually
(frequently) in cl(V) for each V open about x.

DEFINITION 2. A point x in a topological space X is in the §-closure [11, p.
103] of a set K C X (8-cl(K)) if cl(V) N K = @ for any V open about x.

DEFINITION 3. A subset K of a topological space is 8-closed [11, p. 103] if it
contains its #-closure (i.e., 8-ci(K) C K).

The following theorems give some parallels of properties of closure and
closed sets in a topological space for -closure and f-closed sets in the space
and some relationships between these notions. The proofs of these theorems
are straightforward and are omitted [11, Lemmas 1, 2, 3].

THEOREM 1. A point x in a topological space is in the 8-closure of a subset K
if and only if there is a net x, in K which 8-converges to x (X X)-

THEOREM 2. In any topological space

(a) the empty set and the whole space are §-closed.

(b) arbitrary intersections and finite unions of 8-closed sets are 9-closed.
(c) c(K) C 8-cl(K) for each subset K,

(d) a b-closed subset is closed.
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ExaMPLE 1. Each nonempty countable subset of the set of reals endowed
with the cocountable topology is closed but not #-closed.

Main results. There are several characterizations of H-closed spaces in the
literature [2, p. 145], [1, p. 97]. For a definition, we use the following:

DEFINITION 4. A Hausdorff space X is H-closed if every open cover ¢ of X
contains a finite subcollection %3 such that {cl(V): V € % } covers X.

We also make use of the following theorem immediately gotten from [11,
Theorem 2]:

THEOREM 3. A Hausdorff space is H-closed if and only if each net in the
space has a 8-convergent subnet.

DEFINITION 5. A function g: X — Y is weakly continuous [6, Theorem 6] if
for each net x, in X such that x, — x, the net g(xa)—0>g(x).

DEFINITION 6. A function g: X — Y has a strongly-closed graph (6, p. 473] if
for each (x,y) € (X X Y) — G(g), there are open sets U and V about x and
y, respectively, such that (U X cl(V)) N G(g) = O.

It is known that a function g: X — Y has a closed graph if and only if
whenever a net x, — x in X and g(x,) — y in Y, it follows that g(x) = y [13,
p. 115]. We have the following similar result for functions with strongly-
closed graphs.

THEOREM 4. A function g: X — Y has a strongly-closed graph if and only if
whenever a net x, — x in X and g(xa)—())y in Y, it follows that g(x) = y.

PrOOF. Let g have a strongly-closed graph and let x, be a net in X
satisfying x, — x and g(xa);)y. Then (V X (W) N G(g) #* D for V, W

open about x and y respectively. So, (x, y) € G(g) and g(x) = y. For the
converse, let (x, y) € (X X Y) — G(g). Then y # g(x), and there is no net
x, in X satisfying x, — x and g(xa)—€>y. If (V, X cl(Wp))n G(g) # D for

a

each pair V,, W, of sets open about x and y respectively, choose (x,,
8(x,4) € (V, X cl(Wy) N G(g). The ordering of { ¥, X cl(Wy): V,, W, open
about x and y respectively} by inclusion renders (x,; g(x,,) a net with
X,¢— x and g(xa‘g)—(;y, a contradiction. Therefore, there are sets V, W open

about x, y, respectively, and satisfying (V X cl(W)) N G(g) = D: and G(g)
1s strongly-closed. This completes the proof.

We may use the characterizations above to give a proof of the following
theorem which is different and shorter than that given in [6]. If (x,. D) is a
net in a space X, we will denote {x,: a > p} by 7, for each p € D. Using
this notation it is clear that x, §-converges (#-accumulates) to a point x € X
if for each open V about x, there is a p € D satisfying (each p € D satisfies)
T, Ccl(V) (T, N cl(V) # Q). Let & denote a class of topological spaces
containing the class of Hausdorff completely normal and fully normal spaces.

THEOREM 5. A Hausdorff space Y is H-closed if and only if for every space in
class &, each g: X — Y with a strongly-closed graph is weakly continuous.

PrROOF. Let Y be H-closed, let X be any space and let g: X — Y have a
strongly-closed graph. Let x, — x in X. Then g(x,) is a net in Y, so there is a
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subnet y; of x, and y € Y with g(yﬁ);»y. By Theorem 4, g(x) = y. Let V be

a regular open set about g(x). If g(x,) is not eventually in cl(V'), there is a
subnet z, of x, such that g(z,) #-converges to some z € Y — Vsince ¥ — V
is a regular closed set and thus H-closed. This then forces g(x) € Y — V, a
contradiction. So g(xa);)g(x). For the converse, let x, € Y and let (x,. D)

be a net in Y — {x,} with no f-accumulation point in Y — {x,}. Let
X ={x,: « € D} U {x,} with the topology generated by {{x,}: a« € D}
and (T, U {xp}: p € D} as the basic open sets. X is a Hausdorff door space
[7, p. 76] and is easily shown to be in class &. Let i: X — Y be the identity
function and let (x, y) € (X X Y) — G (i). If x # x,, then {x} is open in X;
choose V' open in Y about y with x & cl(V). Then, clearly, ({x} X cl(V)) N
G(i)=@D. If x = x,, then y 5+ x4; so there is a p € D and a V open in Y
about y satisfying x, £ cl(}V) and T,ncl(V)=@.S0 X — cl(V) is open in
X about x and [(X — cl(V)) X (V)] N G (i) = @. Thus, / has a strongly-
closed graph and is weakly continuous. Consequently, if V' is open about x,,
there is a p € D satisfying 7, C cl(V) [8, p. 44]. so xa—g>xo. This completes

the proof.

In [6, p. 474], an example is given to show that the strongly-closed graph
condition in Theorem 5 cannot be relaxed to a closed graph condition. This
example was extracted from [12] and is not described explicitly in [6]
presumably because of its somewhat complicated description. We now exhibit
a space with a simpler description which meets the purposes of the example in
[6].

EXAMPLE 2. Let N be the set of positive integers and let X = {0} U [1, )
with the topology generated by the usual subspace topology of the reals on
[1, 00) and {{0} U U, (k, kK + 1): m € N} as basic open sets.

(a) The space X is Hausdorff.

(b) The space X is not compact since N is an infinite subset of X without
accumulation points.

(c) The space X is H-closed.

(d) The function g, from {1 + 1/n: n € N} U {1} with the subspace
topology, defined by g(1) =1 and g(1 + 1/n) = n for each n € N has a
closed graph which is not strongly-closed. Also, g is not weakly continuous at
1.

In (3], [4], [5], and [10], theorems of the following form are proved; X has
property A if and only if the projection m,: X X Y — Y is closed for each
space Y in a certain class. The next four theorems and main results give an
analogue of this form for H-closed spaces.

THEOREM 6. If X is an H-closed space then the projection from X X Y onto
Y takes 6-closed subsets onto 8-closed subsets for any space Y.

PrOOF. Let X be H-closed, let Y be anv space and let K c:X X Y be
f-closed. Let y € -cl(m,(K)). There is a net (x,. y,) € K with ya;»y. There

is a subnet x, of x, and x € X with x, 7 So (x,, v, )—(x, y) and (x,
13 " " L]
y) € 8-cl(K) Cc K. Thus y € 7, (K).

THEOREM 7. If X is a Hausdorff space and the projection from X X Y onto Y
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takes 0-closed subsets onto closed subsets for every space Y, then X is H-closed.

ProoF. Let (y,, D) be a net in X with no #-convergent subnet and let
Yo & X.LetY = {y,:a € D} U {y,} with the topology generated by {{y,}:
a € D} and {T, U {yo}: p € D} as basic open sets. Let K = {(y,, »,):
a € D} and let (a, b)) € (X X Y) — K. Then a # y, and a # b. Let V be
open about a satisfying {b, yo} C Y —cl(V) and T, C Y — cl(V) for some
i € D. Then Y — cl(V') is open and closed in Y and so V X (Y — cl(V)) is
open about (a, b). Also,

AV x(Y—c(V)]nK=(l(V)X(Y—cl(V))nK=0.

Thus, (a, b) & 8-cl(K) and K is f-closed. 7, (K) is therefore closed in Y and
Yo € cl(m,(K)). This is a contradiction establishing the result.
Combining Theorems 6 and 7, we get the promised result.

THEOREM 8. A Hausdorff space X is H-closed if and only if for every space Y,
the projection from X X Y onto Y takes 6-closed subsets onto 6-closed subsets.

Noting that the space Y used in the proof of Theorem 7 is a Hausdorff
door space and is in the class & whose description precedes Theorem 5, we
may state the following theorem.

THEOREM 9. A Hausdorff space X is H-closed if and only if for every
Hausdorff door space (space in class &) Y, the projection from X X Y onto Y
takes 0-closed subsets onto 0-closed subsets.
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