ON H-CLOSED SPACES

JAMES E. JOSEPH

ABSTRACT. A characterization of H-closed spaces in terms of projections is given along with relating properties.

Introduction. The primary purpose of this paper is to give a characterization of H-closed spaces which is an analogue to the following theorem for compact spaces: A space X is compact if and only if the projection from $X \times Y$ onto Y is a closed function for every space Y [9, p. 21].

Following the notation of [6], we utilize the notion of θ -closed subsets of a topological space from [11, p. 103] and our characterization is stated as follows:

THEOREM. A Hausdorff space X is H-closed if and only if for every space Y, the projection from $X \times Y$ onto Y takes θ -closed subsets onto θ -closed subsets.

Throughout, cl(K) will denote the closure of a set K.

Preliminary definitions and theorems.

DEFINITION 1. A net in a topological space is said to θ -converge (θ -accumulate) [6, Definition 3] to a point x in the space if the net is eventually (frequently) in cl(V) for each V open about x.

DEFINITION 2. A point x in a topological space X is in the θ -closure [11, p. 103] of a set $K \subset X$ (θ -cl(K)) if cl(V) $\cap K \neq \emptyset$ for any V open about x.

DEFINITION 3. A subset K of a topological space is θ -closed [11, p. 103] if it contains its θ -closure (i.e., θ -cl(K) $\subset K$).

The following theorems give some parallels of properties of closure and closed sets in a topological space for θ -closure and θ -closed sets in the space and some relationships between these notions. The proofs of these theorems are straightforward and are omitted [11, Lemmas 1, 2, 3].

THEOREM 1. A point x in a topological space is in the θ -closure of a subset K if and only if there is a net x_{α} in K which θ -converges to x ($x_{\alpha} \rightarrow x$).

THEOREM 2. In any topological space

- (a) the empty set and the whole space are θ -closed,
- (b) arbitrary intersections and finite unions of θ -closed sets are θ -closed,
- (c) $cl(K) \subset \theta$ -cl(K) for each subset K.
- (d) a θ -closed subset is closed.

Received by the editors June 30, 1975.

AMS (MOS) subject classifications (1970). Primary 54D20.

Key words and phrases. H-closed spaces, θ -closed subsets, projections.

J. E. JOSEPH

Example 1. Each nonempty countable subset of the set of reals endowed with the cocountable topology is closed but not θ -closed.

Main results. There are several characterizations of H-closed spaces in the literature [2, p. 145], [1, p. 97]. For a definition, we use the following:

DEFINITION 4. A Hausdorff space X is H-closed if every open cover \mathfrak{A} of X contains a finite subcollection \mathfrak{B} such that $\{cl(V): V \in \mathfrak{B}\}$ covers X.

We also make use of the following theorem immediately gotten from [11, Theorem 2]:

Theorem 3. A Hausdorff space is H-closed if and only if each net in the space has a θ -convergent subnet.

DEFINITION 5. A function $g: X \to Y$ is weakly continuous [6, Theorem 6] if for each net x_{α} in X such that $x_{\alpha} \to x$, the net $g(x_{\alpha}) \xrightarrow{\alpha} g(x)$.

DEFINITION 6. A function $g: X \to Y$ has a strongly-closed graph [6, p. 473] if for each $(x, y) \in (X \times Y) - G(g)$, there are open sets U and V about x and y, respectively, such that $(U \times \operatorname{cl}(V)) \cap G(g) = \emptyset$.

It is known that a function $g: X \to Y$ has a closed graph if and only if whenever a net $x_{\alpha} \to x$ in X and $g(x_{\alpha}) \to y$ in Y, it follows that g(x) = y [13, p. 115]. We have the following similar result for functions with strongly-closed graphs.

THEOREM 4. A function $g: X \to Y$ has a strongly-closed graph if and only if whenever a net $x_{\alpha} \to x$ in X and $g(x_{\alpha}) \xrightarrow{\alpha} y$ in Y, it follows that g(x) = y.

PROOF. Let g have a strongly-closed graph and let x_{α} be a net in X satisfying $x_{\alpha} \to x$ and $g(x_{\alpha}) \xrightarrow{\theta} y$. Then $(V \times \operatorname{cl}(W)) \cap G(g) \neq \emptyset$ for V, W open about x and y respectively. So, $(x, y) \in G(g)$ and g(x) = y. For the converse, let $(x, y) \in (X \times Y) - G(g)$. Then $y \neq g(x)$, and there is no net x_{α} in X satisfying $x_{\alpha} \to x$ and $g(x_{\alpha}) \xrightarrow{\theta} y$. If $(V_{\sigma} \times \operatorname{cl}(W_{\xi})) \cap G(g) \neq \emptyset$ for each pair V_{σ} , W_{ξ} of sets open about x and y respectively, choose $(x_{\sigma,\xi}, g(x_{\sigma,\xi})) \in (V_{\sigma} \times \operatorname{cl}(W_{\xi})) \cap G(g)$. The ordering of $\{V_{\sigma} \times \operatorname{cl}(W_{\xi}): V_{\sigma}, W_{\xi} \text{ open about } x \text{ and } y \text{ respectively}\}$ by inclusion renders $(x_{\sigma,\xi}, g(x_{\sigma,\xi}))$ a net with $x_{\sigma,\xi} \to x$ and $g(x_{\sigma,\xi}) \xrightarrow{\theta} y$, a contradiction. Therefore, there are sets V, W open about x, y, respectively, and satisfying $(V \times \operatorname{cl}(W)) \cap G(g) = \emptyset$; and G(g) is strongly-closed. This completes the proof.

We may use the characterizations above to give a proof of the following theorem which is different and shorter than that given in [6]. If (x_{α}, D) is a net in a space X, we will denote $\{x_{\alpha} : \alpha > \mu\}$ by T_{μ} for each $\mu \in D$. Using this notation it is clear that x_{α} θ -converges (θ -accumulates) to a point $x \in X$ if for each open V about x, there is a $\mu \in D$ satisfying (each $\mu \in D$ satisfies) $T_{\mu} \subset \operatorname{cl}(V)$ ($T_{\mu} \cap \operatorname{cl}(V) \neq \emptyset$). Let S denote a class of topological spaces containing the class of Hausdorff completely normal and fully normal spaces.

THEOREM 5. A Hausdorff space Y is H-closed if and only if for every space in class S, each $g: X \to Y$ with a strongly-closed graph is weakly continuous.

PROOF. Let Y be H-closed, let X be any space and let $g: X \to Y$ have a strongly-closed graph. Let $x_{\alpha} \to x$ in X. Then $g(x_{\alpha})$ is a net in Y, so there is a

subnet y_{β} of x_{α} and $y \in Y$ with $g(y_{\beta}) \xrightarrow{\alpha} y$. By Theorem 4, g(x) = y. Let V be a regular open set about g(x). If $g(x_{\alpha})$ is not eventually in cl(V), there is a subnet z_{μ} of x_{α} such that $g(z_{\mu})$ θ -converges to some $z \in Y - V$ since Y - Vis a regular closed set and thus H-closed. This then forces $g(x) \in Y - V$, a contradiction. So $g(x_{\alpha}) \xrightarrow{g} g(x)$. For the converse, let $x_0 \in Y$ and let (x_{α}, D) be a net in $Y - \{x_0\}$ with no θ -accumulation point in $Y - \{x_0\}$. Let $X = \{x_{\alpha} : \alpha \in D\} \cup \{x_{0}\}$ with the topology generated by $\{\{x_{\alpha}\} : \alpha \in D\}$ and $\{T_u \cup \{x_0\}: \mu \in D\}$ as the basic open sets. X is a Hausdorff door space [7, p. 76] and is easily shown to be in class S. Let $i: X \to Y$ be the identity function and let $(x, y) \in (X \times Y) - G(i)$. If $x \neq x_0$, then $\{x\}$ is open in X; choose V open in Y about y with $x \notin cl(V)$. Then, clearly, $(\{x\} \times cl(V)) \cap$ $G(i) = \emptyset$. If $x = x_0$, then $y \neq x_0$; so there is a $\mu \in D$ and a V open in Y about y satisfying $x_0 \not\in \operatorname{cl}(V)$ and $T_{\mu} \cap \operatorname{cl}(V) = \emptyset$. So $X - \operatorname{cl}(V)$ is open in X about x and $[(X - \operatorname{cl}(V)) \times \operatorname{cl}(V)] \cap G(i) = \emptyset$. Thus, i has a stronglyclosed graph and is weakly continuous. Consequently, if V is open about x_0 , there is a $\mu \in D$ satisfying $T_{\mu} \subset \operatorname{cl}(V)$ [8, p. 44], so $x_{\alpha} \xrightarrow{a} x_{0}$. This completes the proof.

In [6, p. 474], an example is given to show that the strongly-closed graph condition in Theorem 5 cannot be relaxed to a closed graph condition. This example was extracted from [12] and is not described explicitly in [6] presumably because of its somewhat complicated description. We now exhibit a space with a simpler description which meets the purposes of the example in [6].

EXAMPLE 2. Let N be the set of positive integers and let $X = \{0\} \cup [1, \infty)$ with the topology generated by the usual subspace topology of the reals on $[1, \infty)$ and $\{\{0\} \cup \bigcup_{k=m}^{\infty} (k, k+1) : m \in N\}$ as basic open sets.

- (a) The space X is Hausdorff.
- (b) The space X is not compact since N is an infinite subset of X without accumulation points.
 - (c) The space X is H-closed.
- (d) The function g, from $\{1 + 1/n: n \in N\} \cup \{1\}$ with the subspace topology, defined by g(1) = 1 and g(1 + 1/n) = n for each $n \in N$ has a closed graph which is not strongly-closed. Also, g is not weakly continuous at 1.

In [3], [4], [5], and [10], theorems of the following form are proved; X has property λ if and only if the projection $\pi_y \colon X \times Y \to Y$ is closed for each space Y in a certain class. The next four theorems and main results give an analogue of this form for H-closed spaces.

Theorem 6. If X is an H-closed space then the projection from $X \times Y$ onto Y takes θ -closed subsets onto θ -closed subsets for any space Y.

PROOF. Let X be H-closed, let Y be any space and let $K \subset X \times Y$ be θ -closed. Let $y \in \theta$ -cl($\pi_y(K)$). There is a net $(x_\alpha, y_\alpha) \in K$ with $y_\alpha \underset{\theta}{\to} y$. There is a subnet x_{α_μ} of x_α and $x \in X$ with $x_{\alpha_\mu} \underset{\theta}{\to} x$. So $(x_{\alpha_\mu}, y_{\alpha_\mu}) \underset{\theta}{\to} (x, y)$ and $(x, y) \in \theta$ -cl(K) $\subset K$. Thus $y \in \pi_y(K)$.

THEOREM 7. If X is a Hausdorff space and the projection from $X \times Y$ onto Y

J. E. JOSEPH

takes θ -closed subsets onto closed subsets for every space Y, then X is H-closed.

PROOF. Let (y_{α}, D) be a net in X with no θ -convergent subnet and let $y_0 \not\in X$. Let $Y = \{y_{\alpha} : \alpha \in D\} \cup \{y_0\}$ with the topology generated by $\{\{y_{\alpha}\}: \alpha \in D\}$ and $\{T_{\mu} \cup \{y_0\}: \mu \in D\}$ as basic open sets. Let $K = \{(y_{\alpha}, y_{\alpha}): \alpha \in D\}$ and let $(a, b) \in (X \times Y) - K$. Then $a \neq y_0$ and $a \neq b$. Let V be open about a satisfying $\{b, y_0\} \subset Y - \operatorname{cl}(V)$ and $T_{\mu} \subset Y - \operatorname{cl}(V)$ for some $\mu \in D$. Then $Y - \operatorname{cl}(V)$ is open and closed in Y and so $V \times (Y - \operatorname{cl}(V))$ is open about (a, b). Also,

$$\operatorname{cl}[V \times (Y - \operatorname{cl}(V))] \cap K = (\operatorname{cl}(V) \times (Y - \operatorname{cl}(V))) \cap K = \emptyset.$$

Thus, $(a, b) \not\in \theta$ -cl(K) and K is θ -closed. $\pi_y(K)$ is therefore closed in Y and $y_0 \in \text{cl}(\pi_y(K))$. This is a contradiction establishing the result.

Combining Theorems 6 and 7, we get the promised result.

Theorem 8. A Hausdorff space X is H-closed if and only if for every space Y, the projection from $X \times Y$ onto Y takes θ -closed subsets onto θ -closed subsets.

Noting that the space Y used in the proof of Theorem 7 is a Hausdorff door space and is in the class S whose description precedes Theorem 5, we may state the following theorem.

Theorem 9. A Hausdorff space X is H-closed if and only if for every Hausdorff door space (space in class S) Y, the projection from $X \times Y$ onto Y takes θ -closed subsets onto θ -closed subsets.

REFERENCES

- 1. M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968), Academia, Prague, 1971, pp. 93–114. MR 43 #3985.
- 2. N. Bourbaki, *Elements of mathematics. General topology*. Part 1, Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 34 #5044a.
- 3. I. Fleischer and S. P. Franklin, On compactness and projections. Contributions to extension theory of topological structures, (Proc. Sympos., Berlin, 1967), Berlin, 1969, pp. 77-79.
- 4. S. Hanai, Inverse images of closed mappings. I, Proc. Japan Acad. 37 (1961), 298-301. MR 25 #2576.
- 5. ______, Inverse images of closed mappings. II, Proc. Japan Acad. 37 (1961), 302-304. MR 25 #2577.
- 6. L. L. Herrington and P. E. Long, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475.
 - 7. J. L. Kelley, Gernal topology, Van Nostrand, Princeton, N.J., 1955. MR 16, 1136.
- 8. Norman Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46. MR 23 #A3548.
 - 9. S. Mrówka, Compactness and product spaces, Colloq. Math. 7 (1959), 19-22. MR 22 #8479.
- 10. C. T. Scarborough, Closed graphs and closed projections, Proc. Amer. Math. Soc. 20 (1969), 465-470. MR 40 #3514.
- 11. H. V. Veličko, H-closed topological spaces, Mat. Sb. 70 (112) (1966), 98-112; English transl., Amer. Math. Soc. Transl. (2) 78 (1969), 103-118. MR 33 #6576.
 - 12. G. Viglino, C-compact spaces, Duke Math. J. 36 (1969), 761-764. MR 40 #2000.
 - 13. A. Wilansky, Topology for analysis, Ginn, Waltham, Mass., 1970.

DEPARTMENT OF MATHEMATICS, FEDERAL CITY COLLEGE, WASHINGTON, D. C. 20001