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SPACES DEFINED BY SEQUENCES

ANDREW J. BERNER

Abstract. The biquotient, countably biquotient, hereditarily quotient,

and quotient images of ^-spaces are classified. Also, the quotient images of

paracompact M-spaces, and the quotient images of A/-spaces are classified

without any separation axioms. New definitions are given for certain

familiar classes of spaces to give the definitions more uniformity.

1. Introduction. In [1], Michael discussed various generalizations of first

countable spaces and gave an extensive collection of theorems providing

some answers to the question: "What kind of spaces are the images of various

familiar classes of spaces under certain types of quotient maps?" Olson [6]

continued this investigation and extended it to some similarly defined classes

of spaces which generalize the <7-spaces introduced in [2]. Most of the spaces

involved are defined by conditions requiring the existence of certain types of

nested, or decreasing, sequences of sets.

In this paper, we give all the definitions in terms of sequences of sets. Many

of the definitions appear as equivalents in [1]. Some of these definitions are,

perhaps, simpler than the original, equivalent, definitions, and others are

more complicated. The advantage of the scheme lies in the uniformity of the

definitions, giving rise to a general construction of pre-images that proves

many of the classification theorems of [1]. The same construction also

provides a way of classifying the spaces introduced in [6], as well as the

quotient images of paracompact A/-spaces, A/-spaces and <?-spaces, without

any separation axioms.

In §2, we define the spaces and the maps in question, and begin to show

the relationship between the new spaces introduced and the more familiar

class of /c-spaces. §3 gives the construction that will be used in the classifica-

tion theorems. §4 answers the question left open by Olson in [6, p. 6]: "Is

every relatively bi-quasi-/c (relatively countably bi-quasi-/c, relatively singly

bi-quasi-A:) space a biquotient (countably biquotient, hereditarily quotient)

image of a q-spacel" (The answer is "yes".) §5 provides classifications of the

quotient images of spaces of pointwise countable type, strict ^-spaces (and, as

corollaries, using theorems of [1], paracompact A/-spaces and M-spaces) and

<7-spaces, without assuming any separation axioms. As a corollary (again

using theorems of [1]) we get a further relationship between the spaces

introduced for these classifications and /:-spaces. §6 raises a question con-
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cerning regular spaces suggested by these classifications and by a question

from [6].

All sets referred to are nonempty sets, and all maps are continuous

surjections. All sequences of sets (S,) are assumed to be decreasing sequences

of nonempty sets. No separation axioms are assumed unless specifically

stated (in particular, compact and countably compact sets need not be

Hausdorff), but regular spaces and normal spaces are assumed to be Haus-

dorff.

2. Definitions.

Definition 2.1. If S is a subset of a topological space A, then a decreasing

sequence (S0 D Sx D S2D •■•) of subsets of A is an S-sequence if and only

if Sj G Sj for all i implies that the sequence (s0, sx, • ■ • ) has an accumulation

point1 in 5.

(Easy) Examples. (1) A relative ^-sequence (see [6, Definition 2.3, p. 4]) is

an Ar-sequence.

(2) Suppose a sequence of points (s,) converges to a point s in X. Then if

Sj = [sy.j > i), the sequence (S,) is an {5}-sequence.

Remark 2.2.(a) If (S,), a decreasing sequence of subsets of X, is an

S-sequence, and (T,) is a decreasing sequence with T) c S, for each i, then

(T,) is also an S-sequence.

(b) If (Sj) is an S-sequence, and T D S, then (S,) is also a F-sequence.

The next proposition shows the relationship of S-sequences to ^-sequences

and (7-sequences (see [6, Definition 2.3, p. 4]).

Proposition 2.3. (a) If (Sj) is an S-sequence, then (S,) converges2 to S.

(b) If S is countably compact, and (S,) converges to S, then (S,) is an

S-sequence.

Proof, (a) Suppose (S,) is an S-sequence, and O is an open set containing

S. If, for each i, there is a point s, G S, — O, then the sequence (s,) would not

have an accumulation point in S. So for some i, S, c O.

(b) This is effectively the content of [4, Lemma 3.1, p. 335].

Corollary 2.4. (a) (S,) is a {p}-sequence and S, u {p} is open for each i if

and only if (Sj u {/?}) is a decreasing basis for the open sets at p.

(b) (Sj) is an S-sequence and S is countably compact if and only if (S, U S)

is a q-sequence with S being the countably compact subset of the definition.

(c) (S,) is an S-sequence and S is compact if and only if (S, U S) is a

k-sequence with S being the compact set of the definition.

In the following group of definitions, the starred (*) classes of spaces are

defined in [6, pp. 6-7]. If the present definition is not the same as in [6], the

equivalence is either proved in [1] or is easy to show.

1 A point is an accumulation point of (*,) iff every neighborhood of the point contains s, for

infinitely many i.

2A decreasing sequence of sets (A,) converges to a set A iff every open set containing A also

contains some At (and thus all but finitely many A,'s).
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Definition 2.5. A space X is first countable* (of pointwise countable type*,

strict q*, q-space*) if each point p E X has an 5-sequence (5,) of open

neighborhoods with S = [p] (5* compact and S c St for each /', S countably

compact and S c St for each .', S = X).

Definition 2.6. A space X is bisequential* ibi-k*, bi-quasi-k*, relatively

bi-quasi-k*) if whenever a filter base 3F accumulates at a point p in X (i.e.

whenever p E F for each F in ?!), there is an 5-sequence (5,) which meshes

with <$ (i.e. 5, n F ^ 0 for each /' and each F in §) with S = {p} (5

compact, 5 countably compact, S = A1).

Remark 2.7. We can, and do, require, without loss of generality, that in the

above definitions p E Cl(5, n F) for each i and each F E bJ, since ?F u

{neighborhoods of/>} is also a filter base accumulating at p.

Definition 2.8. A space X is countably bisequential* icountably bi-k*,

countably bi-quasi-k*, relatively countably bi-quasi-k*) if whenever (F)) is a

decreasing sequence accumulating at p in X, there is an 5-sequence (5,)

accumulating at p with St c Fj. for each i and S = {p} (S compact, 5

countably compact, S = X).

Definition 2.9. A space X is Frechet* isingly bi-k*, singly bi-quasi-k*,

relatively singly bi-quasi-k*) if whenever p E F, there is an S-sequence (5,-)

accumulating ai p with 5, c F for each i and S = {p} (5 compact, 5

countably compact, S = X).

Definition 2.10. A space X is sequential* (sequentially-k, sequentially

quasi-k, sequentially-q)3 if whenever F is not closed in X, there is a point

p E F - F and an S-sequence (St) accumulating at p with St c F for each /

and S = [p] iS compact, S countably compact, S = X).

Most of the implications among these classes of spaces have been reported

in [1] and [6]. Among the new classes defined, it is obvious that X is

sequential => X is sequentially-/: =^> X is sequentially quasi-/: => X is

sequentially-c7. (Of course, the similar implications among the spaces in

Definitions 2.5, 2.6, 2.8 and 2.9 are just as obvious.) Also, every singly bi-k

space is sequentially-/:, every singly bi-quasi-/: space is sequentially quasi-/:,

and every relatively singly bi-quasi-/c space is sequentially-<?.

Proposition 2.11. Every k-space iquasi-k-space) is sequentially-k (sequen-

tially quasi-k). (See [1] or [6] for definitions])

Proof. If X is a /c-space (quasi-/:-space) and F c X is not closed, then

there is a compact (countably compact) set S and a point p E S which is also

in C1(F n S) - F. But if St = F n S for each i, then p, (S,) and S are as
required by the definition of a sequentially-/: (sequentially quasi-A:) space.

We now give definitions of four types of quotient maps in the same spirit as

the definitions of the spaces.

Definition 2.12 [3, Proposition 2.2, p. 290]. A map/: X -» Y is biquotient if

whenever a filter base f accumulates at .y in Y, then/-1^) accumulates at
some x E f~xiy).

Definition 2.13 [7, Proposition 3.2, p. 149]. A map/: X -> Y is countably

biquotient if whenever iAt) is a decreasing sequence accumulating at y in F,

then if~xiA/)) accumulates at some x E f~xiy).

3 The terminology was suggested by E. Michael.
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Definition 2.14 [1, Lemma 5.2, p. 115]. A map/: A -> Y is hereditarily

quotient if whenever y G A in Y then x G Cl(/"'(^)) for some x Gf~\y).

Definition 2.15. A map/: A -» y is quotient if whenever ,4 is not closed in

y, then for somey G A - A, and for some x G /~'(y), x G Cl(/"'(^))-

Remark 2.16. Definition 2.15 is obviously equivalent to the usual definition

of "quotient map" and points out the relationship between quotient maps and

the spaces defined in Definition 2.10.

3. The main construction. The following construction is the heart of the

proofs of the classification theorems in §§4 and 5.

Definition 3.1. If (S,) is a decreasing sequence of subsets of a topological

space X, we define a new topology on A as follows. A basic open set around a

point p in A is any set of the form U n ({p} U S,) where p G U and U is

open in the original topology on A. A, with this new topology, is called A(S;).

Remark 3.2. We will need these facts about A(S,).

(a) The identity map: A(S,) —> A is continuous.

(b) If p G X and i G co, then {/?} u S, is open in A(S,).

(c) If F c A, then

(~)  {closure in A of S, n F: i G co)

= p| {closure in X(S,) of S,- n F: i G co}.

(d) If Sj G Sj for each i, and s is an accumulation point of (s,) in the

original topology on A, then s is still an accumulation point of (s,) in A(S,).

(e) If the original topology on A is Hausdorff, then so is A(S,).

(f) The relative topology on fl {S,: / G co} is the same in both A(S,) and in

A.

Remark 3.3. In contrast to (e) above, A(S,) need not be regular even if X is.

This will give rise to some questions in §6.

Proposition 3.4. If (S,) is an S-sequence in X, then (S,) is still an

S-sequence in X (Sj).

Proof. This follows immediately from Remark 3.2(d).

Proposition 3.5. If (S,) is a relative q-sequence (q-sequence, k-sequence) in

X, then it still is in A(S,).

Proof. If (S,) is a relative ^-sequence in A (i.e. an A-sequence) then

Proposition 3.4 immediately implies that (S,) is a relative cj-sequence in A(S,).

If (S,) is a ^-sequence (/:-sequence) in A, then it follows from Proposition 3.4,

Remark 3.2(f), and Corollary 2.4(b) (Corollary 2.4(c)) that (S,) is a c/-sequence

(/:-sequence) in A(S,).

4. Images of cy-spaces.

Theorem 4.1. A space Y is a relatively bi-quasi-k space if and only if there is

a q-space X and a biquotient map f: X —» Y.

Proof. As remarked in [6, p. 6], every biquotient image of a c7-space is

routinely seen to be relatively bi-quasi-/c. Suppose, then, that Y is relatively

bi-quasi-A:. For each y G Y and filter base f accumulating at y, choose a
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F-sequence iQ0iy, *3) D Qxiy, *$) D • • • ) that meshes with SF, with y E

G(2,(y, '$) Fl F) for each i and each Fef (see Remark 2.7). Consider the

space Y(y, f) = F(Q,(y, ^)) as defined by Definition 3.1. Let X be the

disjoint union of the spaces Y(y, ?F) for each such pair iy, SF), and let/:

I^y be defined by: /|F(y, 5") is the identity. By Remark 3.2(a), / is

continuous.

Claim 1. X is a ^-space.

Proof. This follows from Remark 3.2(b), Proposition 3.4, and Remark

2.2(b).
Claim 2. The map / is biquotient.

Proof. Suppose SF accumulates at a point y in Y. Since for any F£ f,

the sequence (f2,(.y> '&) Fl F) accumulates aty G F, then, by Remark 3.2(c),

the sequence (f~xiQ,iy, %)) n F(y, SF) n/_1(F)) accumulates at y G

F(y, SF) (formally, this point is the unique element of/~'(y) n F(y, SF)). So

/-1(SF) accumulates aty G F(y, SF) proving/is biquotient.

Claims 1 and 2 prove that X and / are the space and the map required by

the theorem.

Theorem 4.2. A space Y is a relatively countably bi-quasi-k space if and only

if there is a q-space X and a countably biquotient map f: X —> Y.

Proof. One direction is again routine. (See Theorem 5.1 for an example of

a verification of this sort!) In fact, all countably biquotient images of

relatively countably bi-quasi-/: spaces are relatively countably bi-quasi-/:.

Now suppose Y is a relatively countably bi-quasi-/: space. For each y in Y

and each decreasing sequence (F.) accumulating at y, choose a F-sequence

(5,-) with Sj c Fj for each i, and (5,) accumulating aty, and proceed as in the

proof of Theorem 4.1.

Theorem 4.3. A space Y is a relatively singly bi-quasi-k space if and only if

there is a q-space X and a hereditarily quotient map f: X —> Y.

Proof. Similar to the proofs of Theorems 4.1 and 4.2.

5. Quotient images of spaces. In [1, p. 120], Michael got partial characteriza-

tions of quotient images of paracompact M-spaces and M-spaces by looking

at k and quasi-/: spaces. However, some separation axioms were required. We

now prove that the spaces defined in Definition 2.10 are precisely the right

classes of spaces to look at.

Theorem 5.1. A space Y is sequentially-k if and only if there is a space X of

pointwise countable type and a quotient map f: X —> Y.

Proof. Suppose X is of pointwise countable type, /: X —> Y is quotient, and

A c Y is not closed. Then there is a y E A -A and an x G/_1(y) with

x E Clif~xiA)). Let iSj) be an S-sequence of open neighborhoods of x with

fl {Sjm. i E w} D S, a compact set in X. Consider (/(S,)). Clearly this is an

/(S')-sequence and/(5) is compact in Y. So by Remark 2.2(a), (/(S,-) n A) is

also an/(5')-sequence. If O is an open set containing/, then/_,(C>) n Sj is a

neighborhood of x for each i, and thus f~x(0) n 5, n f~x(A) =h 0. Thus

O n fiSj) n A ¥= 0, so the sequence (/(SV) n A) accumulates aty. Thus Y

is sequentially-/:.
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Assume now thaty is sequentially-/:. For each set A that is not closed, pick

a. y G A —A and an S(/4)-sequence (Sj(A)) accumulating at y with each

Sj(A) c A and S(A) compact. Define Y(A) = Y(Sj(A) u S(A)) as defined

by Definition 3.1 and let A be the disjoint union of the spaces Y(A) such that

A is not closed in Y. Let/: A -» Y be defined by: f\Y(A) is the identity. By

Remark 3.2(a), / is continuous.

Claim 1. A is a space of pointwise countable type.

Proof. If p G X, then p G Y(A) for some A. By Remark 3.2(b) {p} u

Sj(A) u S(/4) c y(/l) is open in Y(A) (thus in A) for each /, and by

Corollary 2.4(c) and Proposition 3.5, ({/?} u Sj(A) u S(A)) is a /:-sequence

in Y(A) (thus in A); i.e. ({/>} u S,(/4) u S(A)) is an S(^4) u {/?}-sequence

and S(A) u {/>} is compact in X as required.

Claim 2. The map / is quotient.

Proof. Suppose A is not closed in Y. Then we chose a pointy G A — A in

defining y(/i). Consider y G Y(A) (i.e. {y} = /~'(y) n Y(A)). Suppose

U H ({y} U S,-(/4) U S(/l)) is a basic open set in A around y. Since the

sequence (St(A)) accumulates aty G Y, there is an x G U n S,(^). Look at

x G Y(A). Since/(x) = x, S,(/I) c ^,andx G £/ n ({y} U S,04) u S(/I)),

it follows that

x Gf-\A) n (u n ({y} u s,(^) u S(/())).

Thusy G y(/l) is in Cl(/~'(^)), so/is quotient.

Claims 1 and 2 show that A and / are the space and the map required by

the theorem.

Corollary 5.2. A space is sequentially-k if and only if it is the quotient

image of a paracompact M-space.

Proof. By [1, Theorem 3.E.3, p. 107], every space of pointwise countable

type is a biquotient image, thus a quotient image, of a paracompact M-space,

and the composition of quotient maps is quotient. Conversely, by [1, Proposi-

tion 2.E.3, p. 103] (or as is easily shown directly), every paracompact M-space

is a space of pointwise countable type, and thus all its quotients are

sequentially-/:.

Corollary 5.3. Every Hausdorff sequentially-k space is a k-space.

Proof. If Y is a Hausdorff sequentially-/: space, then the space A con-

structed in the proof of Theorem 5.1 is also Hausdorff by Remark 3.2(e).

Then, by [8, Theorem 1, p. 138], A is the open image of a Hausdorff

paracompact M-space, so Y is the quotient image of such a space. So by [1,

Theorem 6.E.3b, p. 120] Y is a k-spaca.

Theorem 5.4. A space Y is sequentially quasi-k if and only if there is a strict

q-space X and a quotient map f: X —> Y.

Proof. The proof is essentially the same as for Theorem 5.1.

Corollary 5.5. A space is sequentially quasi-k if and only if it is the

quotient image of an M-space.

Proof. The proof is similar to Corollary 5.2, using [1, Theorem 3.F.3, p.
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109] instead of [1, Theorem 3.E.3], and [1, Proposition 2.E3, p. 104] instead of

[1, Proposition 2.E.3].

Theorem 5.6. A space Y is sequentially-q if and only if there is a q-space X

and a quotient map f: X —> Y.

Proof. Modify the proof of Theorem 5.1 as follows. For each A not closed

in Y, choose a pointy E A -A and a F-sequence (Sj(A)) accumulating aty

with Sj c A for each i. Now define Y(A) to be, simply, Y(St(A)) and

proceed as in the proof of Theorem 5.1.

Theorem 5.7. Every regular sequentially quasi-k space is a quasi-k space.

Proof. (This theorem appeared as a question in the original typescript of

this paper. This answer was provided by R. C. Olson.) Suppose A c Y is not

closed. Then there is a p E A - A and an 5-sequence (ST) accumulating atp

with Sj c A for each /', and S countably compact. We can assume p E S.If

A c\ S is closed in S, then there are open sets U and V with p E U,

CliA n S) E V and U n V = 0. Choose s, E S, n U. Then S u {s,:
i E w} is countably compact, and A n iS u {.?,: / E to}) is not closed in

S u {Sj-. i E u).

Corollary 5.8. Every regular sequentially quasi-k space is the quotient

image of a regular strict q-space.

Proof. This follows from Theorem 5.7 and the fact that a quasi-/: space is

the quotient image of the disjoint union of its countably compact subsets.

6. Questions about regular sequentially-q spaces. Corollary 5.8 raises the

following question:

(1) Is every regular sequentially-*/ space the quotient image of a regular

<7-space?

Also, we can add to [6, Problem 2.9, p. 8]:

(2) Is every regular sequentially-c7 space a sequentially quasi-/: space?

Question 2 is interesting, in that, as in [6], the answer is "yes" if regular is

replaced by normal, but "no" if regular is replaced by Hausdorff. In light of

Corollary 5.8, and the fact that regular 17-spaces are strict <?-spaces, Questions

1 and 2 are equivalent. Since this paper was originally written, an example

has been found showing that the continuum hypothesis implies the answer to

these questions is "no."
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