COMPUTATION OF THE UNORIENTED COBORDISM RING

EDGAR H. BROWN, JR. AND FRANKLIN P. PETERSON

ABSTRACT. This note gives a set of generators for the unoriented cobordism ring and it gives a simplification of the algebra involved in Thom's computation of this ring.

In this note we give a simplification of the algebra involved in Thom's computation of the unoriented cobordism ring [3] and, along the way, a recursive formula for the generators of this ring given by Liulevicius [4].

Let A denote the mod two Steenrod algebra, A^* its dual and $\xi_i \in A^*$ the polynomial generators defined by Milnor [1]. In the following all homology and cohomology is with Z_2 coefficients. We identify $H_*(MO)$ with $H_*(BO)$ via the Thom isomorphism. The A module structure of $H^*(MO)$ defines an A^* comodule structure on $H_*(MO)$, $\nabla \colon H_*(MO) \to A^* \otimes H_*(MO)$. The Whitney sum operation makes $H_*(MO)$ into an algebra and ∇ is an algebra map. Let $T \colon \prod^k BO_1 \to BO_k$ be the classifying map of the product of the canonical line bundles. T embeds $H^*(BO)$ in $H^*(\prod^\infty BO_1) = Z_2[t_1, t_2, \dots]$ as the algebra of symmetric functions. For a partition $w = \{i_1, i_2, \dots, i_k\}$ let s_w be the smallest symmetric function containing $t_1^{i_1} \cdots t_k^{i_k}$. Recall under the map $H^*(BO) \to H^*(BO) \otimes H^*(BO)$ induced by the Whitney sum,

$$(1.1) s_w \to \sum s_{w_1} \otimes s_{w_2}$$

where the sum ranges over $w_1 \cup w_2 = w$. Let $\{x_w\} \subset H_*(BO)$ be the basis dual to $\{s_w\}$. Let $x_i = x_{\{i\}}$. (1.1) immediately yields: $x_w = x_{i_1}x_{i_2} \cdots x_{i_k}$ and hence $H_*(BO) = Z_2[x_1, x_2, \ldots]$. A straightforward calculation yields the following result of Switzer [2]: If $x = 1 + x_1 + x_2 + \ldots$ and $\xi = 1 + \xi_1 + \xi_2 + \ldots$,

$$\nabla x = \sum \xi^{i+1} \otimes x_i.$$

We define elements $y_i \in H_i(MO)$ by induction on i as follows: $y_0 = 1$, $y_i = x_i + \sum_{j < i} z_{ij} y_j$ where z_{ij} is the i - j component of $(\sum y_{2^k - 1})^{j+1}$ if $j \neq 2^s - 1$ and $z_{ij} = 0$ if $j = 2^s - 1$.

Тнеокем (1.2).

$$H_*(MO) = Z_2[y_1, y_2, \dots], \quad \nabla y_i = 1 \otimes y_i \quad \text{if } i \neq 2^j - 1,$$

$$\nabla y_{2^{j-1}} = \sum \xi_{j-k}^{2^k} \otimes y_{2^{k-1}}.$$

Received by the editors February 27, 1975.

AMS (MOS) subject classifications (1970). Primary 57A70.

The usual argument then gives

COROLLARY (1.3). The Hurewicz map $\rho: \pi_*(MO) \to H_*(MO)$ defines an isomorphism $\mathfrak{N}_* \approx Z_2[y_i|i \neq 2^j-1]$ where \mathfrak{N}_* is the unoriented cobordism ring.

REMARK. With analogous definitions for the y_i , (1.2) holds for $H_*(MU; Z_p)$, A'_p , the algebra of reduced pth powers, and 2 replaced by p, an odd prime.

REMARK. Using the techniques in [5], one may show that $y_i = x_i$ if $i = tp^j - 2$, t = 1, 2, ..., p - 1, $y_i \in H_i(MO; Z_2)$ for p even and $y_i \in H_{2i}(MU; Z_p)$ for p odd.

PROOF OF (1.2). Let $N = H_*(MO)/\{x_i|i=2^k-1, k>0\}$ and let $p: H_*(MO) \to N$ be the projection. $A^* \otimes N$ is a polynomial algebra on the generators $\xi_i g$ and $p(x_i)$, $i \neq 2^k-1$, and it is an A^* comodule under $\psi \otimes id: A^* \otimes N \to A^* \otimes A^* \otimes N$ where ψ is the comultiplication in A^* . Let $f = (id \otimes p) \nabla: H_*(MO) \to A^* \otimes N$. f is a ring homomorphism and an A^* comodule map. We show by induction on i that

(1.4)
$$f(y_i) = 1 \otimes p(x_i), \quad i \neq 2^k - 1, \\ = \xi_k \otimes 1, \quad i = 2^k - 1.$$

For i = 0 (1.4) is true. Suppose (1.4) is true for 1, 2, ..., i - 1.

$$f(y_i) = f(x_i) + f\left(\sum_{k} \left(\left(\sum_{k} y_{2^{k-1}}\right)^{j+1}\right)_{i=1} y_j\right)$$

where the above sum ranges over $j < i, j \neq 2^k - 1, k \ge 0$.

$$f(x_i) = \sum_{j=0}^{l} (\xi^{j+1})_{i-j} \otimes p(x_j).$$

Thus by the inductive hypothesis,

$$f(y_i) = 1 \otimes p(x_i) + (\xi)_i \otimes 1$$

and (1.4) holds for i.

f maps the y_i 's onto polynomial generators and hence is an epimorphism. $H_*(MO)$ and $A^* \otimes N$ have the same rank in each dimension and therefore f is an isomorphism. (1.2) now follows from the comodule structure on $A^* \otimes N$.

BIBLIOGRAPHY

- 1. J. Milnor, The Steenrod algebra and its dual, Ann of Math. (2) 67 (1958), 150-171. MR 20 #6092.
 - 2. R. Switzer, Homology comodules, Invent. Math. 20 (1973), 97-102.
- 3. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890.
- 4. A. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962/63), 121-131. MR 26 #3058.
- 5. E. Brown, D. Davis and F. Peterson, $H_*(BO)$, $H_*(BU)$ and some results about the Steenrod algebra (to appear).

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139