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A CHARACTERIZATION OF THE CAUCHY TYPE

FRANK B. KNIGHT

Abstract. It is proved that a random variable X is of Cauchy type if and

only if (aX + b)(cX + d) has the same type as X for every a, b, c,

d with ad — be # 0.

The Cauchy density f(y) = 77-1 (1 + y2)~X, -oo < y < oo, with distribu-

tion function F(x) = 77_1(Tan~'x + tr/2), has come to play an increasingly

important role both in advanced probability and in undergraduate courses.

Much of this emphasis is certainly due to its position as a member of the

symmetric stable family. Recalling that the "type" of a probability distribution

F is the equivalence class of F under the relation F, = F2 if either Fj(x)

= F2iax + b), a > 0, or Fj(x) = 1 - F2iax + b), a < 0, for constants (a, b),

we can define the symmetric stable family by the property that the distribution

type is invariant under convolution.

In the present note, however, we will characterize the Cauchy type by the

following property, for which convolution (i.e. sums of independent random

variables) has no apparent relevance.

Theorem. A random variable X is of Cauchy type if and only if, whenever

ad — be ^ 0, iaX + b)icX + d) has the same type as X.

Remarks. A related result of E. J. Williams [5] asserts that X is standard

Cauchy if and only if, for some constant b which is not the tangent of a

rational multiple of 2w, both X and (1 + bX)/ib — X) have the same

distribution. The proof of [5] is a fairly transparent application of the

representation X = tan 9, where 9 is uniformly distributed on (0, tt) if X is

standard Cauchy. We have not found any way to use this representation for

the present theorem, however, nor do we know of any physical or geometrical

reasoning by which one can deduce the result. This seems to be a gap, since

the theorem has an obvious geometric interpretation in terms of the group

y = iax + b)/icx + d)~ , ad - be ¥= 0, of projectivities of the line. It is

equivalent to the assertion that the Cauchy measure type is the only finite

measure type invariant under projection from one line onto another in the

Euclidean plane, from any point not on either line.1

Proof. By straightforward algebra, if c ^ 0, iaX + b)/icX + d)~ = c,

+ c2iX + c3)~ , where c3 = d/c, and this has the same type as (A" + c3)~ .
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'Added in proof. This gap is filled in [2] using more advanced methods.
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Setting c3 = c, it thus suffices to consider only invariance of type for

(A' + c)~x. If X is standard Cauchy, it is just an exercise to show that the

density of (X + c)~~ is af(ay + b) where a = 1 + c2 and b = — c, a fact used

previously in [3]. This proves sufficiency, since any A" of Cauchy type is

distributed like c,X + c2, hence (A" + c)~ has the same type as

(X + (c2 + c)/cx)-x.

Our proof of the necessity is considerably more involved. We begin by

noting that the distribution Fx(x) of X must be continuous, for at a disconti-

nuity —c, (X + c)~  would not even have a well-defined distribution.

Lemma 1.    Fx = F has a strictly positive and continuous density f(y).

Proof. For x > 0 we have

P{(X + c)"1 < x}

= P{X + c g x"1 and X + c > 0} + P{x~x g X + c and X + c < 0}

= P{-c < X < -c + x"1} + P{X < -c).

Assuming that P/x+c)-\(x) = F(a(c)x + b(c)), for a(c) > 0, we thus have

(1) F(-c + x"1) - F(-c) = 1 - F(a(c)x + He)),

while for a(c) < 0 the right side is simply F(a(c)x + b(c)). The left side is

continuous in (c, x) for x ¥= 0, while F(x) must have (uncountably many)

points of two-sided increase. For each c we can thus set a(c)xx + b(c) and

a(c)x2 + b(c) equal to two such points, and it follows that a(c) (which has no

zeros) and b(c) are each continuous in c. If we now divide (1) by x~x and take

the limit inferior and the limit superior as x -* oo, the right side becomes

..      .      x(l - F(x)) x(l - F(x))
hm  inf —- or    hm sup —-. ,

x^cc        a(c) *_,«,        a(c)

respectively, hence each is either = 0, = oo, or ka(c)"x, k > 0, for all c. An

analogous result holds for a(c) < 0, and since the left side of (1) becomes

d+ F(—c)/dx+, except perhaps on a Lebesgue null set, the two cases of lim sup

and lim inf merge. The alternatives 0 and oo are excluded by the nature of F,

the former because d+ F/dx+ = 0 implies that Zms a constant [4, p. 98]. Hence

F(x)=fX   f^F(y)dy =  T   k\a(y)\~X dy,
J-ao ay j-oo

and the lemma is proved.

Differentiating in (1) we now obtain equivalently

(2) x~2f(x-x - c) = |a(c)|/(fl(c)x + b(c)).

The proof of the following two lemmas is postponed to follow the main

argument.

Lemma 2.    a(c) > 0.
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Lemma 3.   fiy) has 3 continuous derivatives.

Using   these   lemmas,   we   shall   conclude   the   argument.   Setting  hiy)

= fxiy), (2) is equivalent to

(3) x2hix~x -c) = iaic))~Xhiaic)x + 6(c)).

Next, if we set x~x - c = aic)x + 6(c), we have a quadratic equation in x

with discriminant (6(c) + c) + 4a(c) > 0. Hence, real solutions exist, and at

such a solution x0 we have a(c)xo = 1 - (6(c) + c)x0, while at the same time,

by cancelling h in (3), Xq = aic)~ . Thus 6(c) = — c. Next, we differentiate

twice in (3), obtaining

(4) 2xhix~x - c) - h'ix~x -c) = h'iaic)x - c),

and

(5) 2/.(*"' - c) - 2x~xh'ix-x - c) + X-2h"ix~x - c) = a(c)/i"(a(c)x - c).

Therefore, irrespective of the sign of x, we have

(6) lim   aic)h"ix) = 2/j(-c),
v   ' x->±co

and it follows that h" must have an interior extremum, denoted by x'. Now if

we introduce w = x~x in (5) and differentiate with respect to w, cancellation

occurs and we are left with

(7) w2h'"iw - c) = -a2ic)w-2h'"iaic)w-x - c).

The right side vanishes whenever aic)w~x — c = x', or w = aic)ic + x')

As c —* — x' ±, we obtain that h'"ix) = 0 for all | x \ sufficiently large. But

writing (7) in the form

(8) h'"ix~x - c) = -a2ic)x4h'"iaic)x - c)

and letting x —> oo, it follows that h'"i-c) = 0. Hence, hix) =/~'(x) is a

polynomial of degree 2, and by routine completion of the square it must have

the form a-1((«* + b)2 + 1), a > 0, in order for/to be a probability density.

This completes the proof.

Returning to Lemma 2, our proof is by a (somewhat tedious) reductio ad

absurdum. By (2) we have, if aic) < 0,

(9) lim  fix~] - c) =    lim   -a(c)_1x2/(*) = -kaic)~l,
JC->±00 X->±00

where k > 0 is a constant. Letting x~x — c = z, and noting that /(— c)

= -/ca(c)~\ we obtain by (2) and (9)

fiz) = -aic)(z + cy2fiaic)iz + c)"1 + 6(c))

(10) ■
=   lim  /(a(c)(z + c)-X + 6(c)),

c—*±oo

uniformly   in   finite   intervals   of  z.   The   argument   on   the   right   equals
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(a(c) + cb(c))(c + z)~x + b(c)(c + z)"xz, and as c -* ±00, this must converge

to a linear function a + Bz. Since f(z) = f(a + Bz) and limz^±o0f(z) = 0,

we can obtain by iteration that  \B\ = 1 and a = 0.  But since a(c) < 0,

and limc_,x c~x(a(c) + cb(c)) = 0, we must have

(11) B = +1 =    lim   b(c)c~x =    lim   -^.
c—»±oo c—*±oo £^

Next, we make the simultaneous substitutions (c + z)a(c)~ for x and b(c)

for c in (2) to get

a(c)2(c + zy2f(a(c)(c + z)~x - b(c))

02) = -a(b(c))f(^(c + z) + b(Kc))).

Letting z —> —c and recalling (9) and (2) we have

(13) k = -a(b(c))f(b(b(c))) = kf-x(-b(c))f(b(b(c))).

Since the range of b(c) is (—00, +00), this yields for all x,

(14) f(b(x))=f(-x).

Finally, we consider the simultaneous equations — (x~x — c) = w and a(c)x

+ b(c) = b(w), for fixed c. Whenever there is a solution (x, w) we can cancel

in (2), using (14), to obtain x-2 = —a(c). These equations become

x = (c — w)~  and x = (b(w) — b(c))a(c)~ ,

where the latter is continuous in w with limits + 00 and — 00 as w

—* — 00 and w —> +00. It follows that for each c there are two simultaneous

solutions, one at wx(c) < c, and one at w2(c) > c, with corresponding values

x = ±y—a(c). By algebra we have

w2(c) - wx(c) = 2(-a(c)y±

and

fc(w2(c)) - b(wx(c)) = 2(-a(c))1 = a(c)2(w2(c) - wx(c)).

Since limc^>ao c(-a(c))~^ = 1, we can choose inductively 0 < cx < c2 < • • •

such that w2(cn) = wx(cn+x) for each n, and lim„^00c„ = lim„_>00w2(c„)

= 00. Thus, for each « we obtain

6(w2(c„)) - b(wx(c2)) =   2  £(w2(c,)) - />(*,(<:,))
&=2

" 2

=   2  a(c*) (w2(c*) - w2(ck_x)),
k = 2

where lim^^ooCZ^) c^"4 = 1. But this implies that limn^00 w2(cn)b(w2(cn))"x

= 0, contrary to (11), and completes the proof of Lemma 2.
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Turning to the proof of Lemma 3, we note that, up to terms of smaller order

of magnitude, the differential quotients of (3) yield

x2iAx)~lihix-x - c - x~2Ax) - hix~x - c)) + 2xhix~x - c)

= iaic)Ax)~lihiaic)x - c + a(c)Ax) - /z(a(c)x - c)).

Setting^ = x_1 - c = aic)x - c, we have as before the solution x = aic)~\

Thus x~2Ax = a(c)Ax = Ay, and we can combine the first term on the left of

(15) with the right side to obtain

(16) lim (AyTlihiy + Ay) - h(y - Ay)) = 2xh(y),
v      ' Ay->0

where y = a(c)1 — c and x = aicy1 are continuous in c. This implies easily

that

(17) h'(y) = a(Cyhiy)

for all>" of this form: in particular, for all_v sufficiently large (as c —* — oo). But

by (9) (with a{c) > 0 in the present case) we have /i(—c) = ka~ (c), whence

fl'(c) exists for all c sufficiently large negative. Then we can differentiate (17)

again repeatedly and obtain the existence of the derivatives of h for large y.

But it is clear from (3) that differentiability of h{aic)x + 6(c)) for large x

implies differentiability at —c for arbitrary c. This completes the proof.

As was noted above, this theorem has an interpretation in terms of measures

instead of probabilities. In fact, using the notation_y'_1'(ax) = {x: _y(x) E dx]

for any set dx, we have as a final observation the

Corollary. Let pidx) be a {possibly infinite) Borel measure which is finite on

compact sets and such that, for every y = (ax + 6)Hex + d) iad — be ¥= 0)

there is some z = ax + B for which piyi-~x)idx)) = piz^x)idx)). Then pidx) is

necessarily finite, and, hence, of Cauchy type. If p is not assumed finite on compact

sets, then either p is finite or /t(jc, ,x2) = oo for all xx < x2 .

Proof. Choose yix) = l/x - c, so that y^"x\x) = -l/(x + c). Then writ-

ing pia, b) — pib, a) if a > 6, we have for suitable constants otic), P(c) and xx

< -c < x2, the identity

piaic)xx + "Bic),aic)x2 + /?(c)) = pi~oo, l/(x, + c)) + ,t(l/(*2 + c), oo).

Thus ju. is finite at ± oo and the first assertion follows.

For the second, we consider on the extended real line R = {-oo ^ x ±k oo}

the set S = [x: ^(/VLx)) = oo for every open neighborhood Nix) of x).

Clearly, S is closed in R. If S is not dense in R, let N E R - S be open. Then

for c E N and^_l^(x) = -l/(x + c) the measure piy^~x\dx)) is bounded at

±oo. Since z'-1^ preserves boundedness, this implies that pidx) is itself

bounded at ±oo, and thus S is a bounded subset of R. But if —c

E S i\\eny^~x\x) takes Ni~c) into a neighborhood of {±00} while z~'(x)

leaves 5 bounded. This is a contradiction unless S is void, completing the

proof.
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