A COUNTEREXAMPLE CONCERNING INSEPARABLE FIELD EXTENSIONS

JAMES KEVIN DEVENEY

ABSTRACT. Let $K \supseteq M \supseteq k$ be a chain of fields of characteristic $p \neq 0$ where K is separable over M and M is purely inseparable over k. Recently it has been shown that if K has a separating transcendency basis over M or if M is of bounded exponent over k, then $K = M \otimes_k S$ where S is separable over k. This note presents an example to show that, in general, no such S need exist.

Throughout, we consider a chain of fields $K \supseteq M \supseteq k$ of characteristic $p \neq 0$ where K is separable over M and M is purely inseparable over k. Recent papers [1] and [2], have examined the question of when K can be expressed as $M \otimes_k S$ where S is a separable extension of k. It has been shown that if M is of bounded exponent over k [1, Theorem 5], or if K has a separating transcendency basis over M [2, Lemma 4], then $K = M \otimes_k S$ for some S. The purpose of this note is to provide an example to show that, in general, no such S exists. Necessarily, M will be of unbounded exponent over k and K will not have a separating transcendency basis over M.

EXAMPLE 1. Let P be a perfect field of characteristic $p \neq 0$ and let $\{x_1, x_2, \ldots, x_n, \cdots\}$ be an algebraically independent set over P. Set

 $K = P(x_1, \dots, x_n, \dots),$ $M = P(x_1 x_2^p, x_2 x_3^p, \dots, x_n x_{n+1}^p, \dots),$ $k = P(x_1^p x_2^p, x_2^p x_3^{p^2}, \dots, x_n^p x_{n+1}^{p^n p^{n+1}}, \dots).$

Since $(x_n x_{n+1}^p)^{p^n} \in k$ for all n, M is purely inseparable over k. $\{x_1 x_2^p, x_2 x_3^p, \ldots, x_n x_{n+1}^p, \cdots\}$ is a p-basis for M and remains p-independent in K, so K is separable over M. Moreover, elementary calculations show $\{x_1 x_2^p, \ldots, x_n x_{n+1}^p, \cdots\}$ is actually a p-basis for K, and thus K is relatively perfect over M, i.e. $K = M(K^p)$. We now assume there exists a field S separable over k such that $K = M \otimes_k S$.

LEMMA 2. S is relatively perfect over k.

PROOF. Recall that $K = M(K^p)$. Since we are assuming K = M(S), $K^p = M^p(S^p)$, and so $K = M(M^p)(S^p) = M(S^p)$. Thus $K = M \otimes_k k(S^p)$ and we must have $S = k(S^p)$.

Now since S is relatively perfect over k, $S = k(S^{p^n}) \subseteq k(K^{p^n})$ for all n. Thus $S \subseteq \bigcap k(K^{p^n})$.

LEMMA 3. $\cap k(K^{p^n}) \subseteq P(x_1^p, x_2^{p^2}, \ldots, x_n^{p^n}, \cdots) = \overline{k}.$

PROOF. Since $\overline{k} \supseteq k$, $\cap k(K^{p^n}) \subseteq \cap \overline{k}(K^{p^n})$. Since

Received by the editors November 18, 1974.

AMS (MOS) subject classifications (1970). Primary 12F15.

© American Mathematical Society 1976

$$K = \overline{k}(x_1) \otimes \overline{k} \ \overline{k}(x_2) \otimes \overline{k} \cdots \otimes \overline{k} \ \overline{k}(x) \otimes \overline{k} \cdots,$$

 $\cap \overline{k}(K^{p^n}) = \overline{k}$, and the lemma is established.

We now have $S \subseteq \bigcap k(K^{p'}) \subseteq \overline{k}$. To show no such S exists it suffices to show $M(\overline{k}) \neq K$.

$$M(\bar{k}) = P(x_1 x_2^p, \dots, x_n x_{n+1}^p, \cdots) (x_1^p, x_2^{p^2}, \dots, x_n^{p^n}, \cdots)$$

= $P(x_1 x_2^p, \dots, x_n x_{n+1}^p, \cdots) (x_1^p) = M(x_1^p).$

 $P(x_1, \ldots, x_n)$ is algebraic over $P(x_1, x_1x_2^p, \ldots, x_{n-1}x_n^p)$, and hence both fields have the same transcendence degree *n* over *P*, which means that x_1 , $x_1x_2^p, \ldots, x_{n-1}x_n^p$ are algebraically independent over *P*. Since this is true for all *n*, the set $\{x_1, x_1x_2^p, x_2x_3^p, \cdots\}$ is algebraically independent over *P*, and hence x_1 is transcendental over $M = P(x_1x_2^p, x_2x_3^p, \cdots)$. By Luroth's theorem $M(x_1^p) \subseteq M(x_1) \subseteq K$. Thus no such *S* can exist.

References

1. N. Heerema and H. F. Kreimer, *Modularity vs. separability for field extensions*, Canad. J. Math. (to appear).

2. N. Heerema and D. Tucker, Modular field extensions, Proc. Amer. Math. Soc. 53 (1975), 301-306.

DEPARTMENT OF MATHEMATICAL SCIENCES, VIRGINIA COMMONWEALTH UNIVERSITY, RICH-MOND, VIRGINIA 23284