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A COUNTEREXAMPLE CONCERNING INSEPARABLE
FIELD EXTENSIONS

JAMES KEVIN DEVENEY

Abstract. Let K D M D k be a chain of fields of characteristic p j= 0

where K is separable over M and M is purely inseparable over k. Recently it

has been shown that if K has a separating transcendency basis over M or if

M is of bounded exponent over k, then K = M ®t 5 where 5 is separable

over k. This note presents an example to show that, in general, no such S

need exist.

Throughout, we consider a chain of fields K D M D k of characteristic

p t^ 0 where K is separable over M and M is purely inseparable over k.

Recent papers [1] and [2], have examined the question of when K can be

expressed as M ®k S where 5 is a separable extension of k. It has been

shown that if M is of bounded exponent over Ac [1, Theorem 5], or if K has a

separating transcendency basis over M [2, Lemma 4], then K = M ®k S for

some 5. The purpose of this note is to provide an example to show that, in

general, no such 5 exists. Necessarily, M will be of unbounded exponent over

Ac and K will not have a separating transcendency basis over M.

Example 1. Let P be a perfect field of characteristic p =/= 0 and let (x,,

x2, . . . , xn, ■ ■ ■ } be an algebraically independent set over P. Set

K= P(xx,...,x„,- ■ ■ ),

M= P(x1x|,x2xf,...,x„x^+,,+; • • ),

k = P(xxxj , x2 x3 , . . . , xn xn+,, • • • ).

Since (xnxp+xy" G Ac for all n, M is purely inseparable over Ac. {xxxP,

x2xP, . . . , xnxp+x, • • • } is a/7-basis for M and remainsp-independent in K,

so K is separable over M. Moreover, elementary calculations show

{xxx%, . . . , xnxp+x, • • • } is actually ap-basis for K, and thus K is relatively

perfect over M, i.e. A" = M(KP). We now assume there exists a field S

separable over k such that K = M ®k S.

Lemma 2. 5 is relatively perfect over k.

Proof. Recall that K = M(KP). Since we are assuming K = M(S), Kp

= Mp(Sp), and so K = M(MP)(S") = M(Sp). Thus K = M ®k k(Sp) and
we must have S = k(Sp).

Now since 5" is relatively perfect over k, S = k(Sp") C k(Kpn) for all n.

Thus Sen k(Kp").

Lemma 3. n Ac(A:/'") C P(xf, xP\ ..., xp\ ■ ■ ■ ) = k.

Proof. Since k D k, f] k(Kp") C fl k(Kp"). Since
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K = kiXl) ® ~k kix2) ® k ■ ■ ■  ®kkix) ® k ■ • • ,

D k~iKp") = k, and the lemma is established.

We now have 5 C fl kiKp") E k. To show no such 5 exists it suffices to

show M(k) =t K.

M(k) = Pixxx$, ..., xnx'n+x, ■ ■ ■ ){x{, xt, • ■ ■ , *f, • • • )

= Pixxxi, ..., x„x£+l, ■ ■ ■ )(xf) = M(xf).

Pixx, . . . , x„) is algebraic over Pixx, xxxP, . . . , xn_xxp), and hence both

fields have the same transcendence degree n over P, which means that xx,

xxx$, ■ ■ ■ , xn_xxp are algebraically independent over P. Since this is true for

all n, the set {xx, xxxP, x2xP, • • • } is algebraically independent over P, and

hence xx is transcendental over M = PixxxP, x2xP, ■ ■ ■ ). By Luroth's

theorem M(jcf) C M(x,) C K. Thus no such S can exist.
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