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ON DERIVATION ALGEBRAS OF MALCEV
ALGEBRAS AND LIE TRIPLE SYSTEMS

ERNEST L. STITZINGER

Abstract. W. H. Davenport has shown that the derivation algebra 3)(4) of

a semisimple Malcev algebra A of characteristic 0 acts completely reducibly

on A. The purpose of the present note is to characterize those Malcev

algebras which have such derivation algebras as those whose radical is

central and to obtain the same result for Lie triple systems. Analogous results

are known to hold for standard and alternative algebras.

Theorem. Let A be a Malcev algebra or a Lie triple system over a field of

characteristic 0. Then the derivation algebra ^(A) of A acts completely reducibly

on A if and only if the radical R of A is contained in the center Z of A.

All algebras considered here are finite dimensional over a field of character-

istic 0 and the unexplained notation is as in [8]. We note that if S is a subset

of a vector space A, then <5> denotes the linear span of S.

Remark. The referee has noted that for Malcev algebras the condition that

the radical is central is characterized in several ways in [5, Lemma 3].

1. The Malcev algebra case. An algebra A is said to be Malcev if the

identities

(0 x2 = 0

and

(2) (xy)(xz) = Hxy)z)x + Hyz)x)x + (izx)x)y

are satisfied in A. Sagle [7, p. 453] has shown that for each x, y E A, Dix,y)

= [Rx,Ry] + Rxy is a derivation of A and that if D E ®(v4), then

(3) [Dix,y),D] = DixD,y) + D(x,yD).

A simple computation shows that

(4) Jix,y,z) = xDiy,z) + yDiz,x) + zDix,y)

holds in A where Jix,y,z) = ixy)z + iyz)x + izx)y.

We recall some definitions for a nonassociative algebra A. Let A^

= A and ^n+1) = iA^n))2 for n = 1,2,.... Then A is said to be solvable if

A*' = 0 for some integer r. In general, A^ may not be an ideal of A. For

many classes of algebras, including Malcev algebras, one obtains a series of
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ideals of A as follows: Let B be an ideal of A, let i?'1' = B and let
B[n+\] = B[n]B[n\ + (B[n]B[n}jA  If A is Malcev, then flM is an ideal of A for

each integer n. If B^' = 0 for some r, then B is called an L-solvable ideal of

A. By [6, Theorem 1.1] solvability and /.-solvability are equivalent notions for

ideals of Malcev algebras. Now suppose that B is a minimal solvable ideal of

A. Then B^ is an ideal of A properly contained in B; hence, Z?'2' = 0 and,

hence, B2 = 0. A Malcev algebra is called abelian if A2 = 0, and since A is

anticommutative, A is abelian if and only if it is commutative. Likewise an

ideal of a Malcev algebra is central if and only if it is an annihilating ideal.

An algebra A is called nilpotent if there exists an integer / such that every

product of t elements of A, no matter how associated, is 0. Clearly if A is

nilpotent, then A is solvable, but the converse fails for Malcev algebras.

Finally, the sum of two nilpotent ideals of a Malcev algebra A is a nilpotent

ideal; hence, there exists a maximal nilpotent ideal called the nil-radical of A.

Proof of Malcev algebra case. Suppose that A is a Malcev algebra and

that R G Z. Under this assumption, R is complemented by a semisimple

subalgebra S [10, Theorem 1]. Let

2), = [D G ®04); D: S -> S,D: R -> 0}   and

2)2 = [D G 1)(A);D: S-> 0}.

We claim that 1)(A) = 2)r © 2)2 anc* that 2), and 2)2 are completely reducible

acting on A. Since 2>r and 2)2 are then ideals of 2)(yl)> the result will then

follow. Let D G ®(A) and x G S. Then xD = (xD)s + (xD)R where (xD)s

G S and (xD)R G R. If y G S, then

((xy)D)s + ((xy)D)R = (xD)sy + (xD)Ry + x(yD)s + x(yD)R.

Define Ds and DR on S by (x)Ds = (xD)s and (x)DR = (xD)R. Then Ds is a

derivation of S into ^, Z)R is a derivation of S into R and Z)|s = £>$ + DR . By

[10, Lemma 2], Z)^ can be extended to a derivation of A of the form

2 D(xi,yi) where x, G /?, y, G S. Then, since R G Z, DR = 0. Then Z)|s

= .£>£, Z)|s: S -> S and D|5 may be extended to an element D of 2)]. Then

Z> = (Z) - O) + D where Z> - D G ®2 and Z5 G ®,. Hence, ®(y4) = $>,

+ ®2. Since each element of ©(S) can be extended to an element of ®i, the

complete reducibility of ®i on A follows from that of ®(5) on S. The latter

result holds by [1, Theorem 5]. Again since R G Z, any linear transformation

of R is a derivation and can be extended to an element of 5D2. Hence, that ®2

acts completely reducibly on A follows immediately and 1)(A) does also.

Conversely, suppose that ®(/0 acts completely reducibly on A and let N be

the nil-radical of A. We claim that J(x,y,z) = 0 for all x, y G A, z G N and

this will hold if each term on the right-hand side of (4) is 0. Let

5D = (D(z,x); for all z G N,x G A)    and

K = (yD(z,x); for all z G N,x,y G A).

Since N is characteristic in A by [2, Theorem 14], 2) is an ideal in 1)(A) by (3).

Then

(yD(z,x))D = y[D(z,x),D] + (yD)D(z,x) G K   for ally, x G A, z G N
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and, therefore, A' is a characteristic subspace of A. Let B be a 3)(/I)-invariant

complementary subspace of K in A. If y E B, then yDiz, x) E B fl K = 0.

Hence, K = (yDiz,x); all z E N,x E A,y E K). For each z E N, Rz is in

the radical of the multiplication algebra A* of A by [2, Theorem 2]; hence,

Z>(z, x) is in this radical and the Lie algebra C(5D) generated by ® consists of

nilpotent linear transformations. Suppose that K # 0 and let J = [y E K;

yDiz,x) = 0 for all z E N,x E A}. From the condition on 2(2)), / # 0 by

Engel's theorem. Furthermore, J is ®(yf)-invariant since

iyD)Diz,x) = -yDizD,x) - yDiz,xD) + iyDiz,x))D = 0

for all D E 1>iA), z E N, y E K and x E A using (3). Let r/bea ®(4)-

invariant complementary subspace to J in K. For each k E K, kDiz, x) E H;

hence, K C H and J = 0. Hence, K = 0. If Kx = (xDiy,z); all x,y E A,z

E A), then the same argument just used yields that Kx = 0. Now let

A"2 = (zDix,y); all z E N,x,y E A)

and note that K2 is ®(v4)-invariant. Let B2 be a ®(^-invariant complementary

subspace of K2 in A. If z E B2 n A, then z£>(x,_y) G 2?2 n ^2 = 0; hence,

K2 = (zDix,y); all z G A:2,jc,.v G /1>. From (4),

ixy)z + iyz)x + izx)y = izx)y — izy)x + zixy)    for all x, y E A, z EN

since yDiz, x) = xDiy,z) = 0. Hence, ixy)z = 0. Then

0 = xDiy,z) = ixy)z - ixz)y + xiyz)

yields that

RxRy = -RyRx   on A.

Let 5 be the natural representation of A on A. Then Sx Sy = -Sy Sx and iSx)

= 0 for all x G A. Then by [2, Theorem 2], Sx lies in the radical of the

multiplication algebra SiA)* of SiA). Hence, if SD2 = (D{x,y) restricted to A;

all x, y E A)>, then 8(®2) consists of nilpotent linear transformations. Let

J2 = [z E K2; zDix,y) = 0 for all x, y E A} and suppose that K2 # 0. Then

J2 ¥= 0 by Engel's theorem. Furthermore, J2 is 3)(v4)-invariant and we let H2

be a ®(/l)-invariant complementary subspace of J2 in K2. If k E K2, then

kDix,y) E H2; hence, K2 C //2 and /2 = 0. Therefore, K2 = 0. From (4),

y(x,_y,z) = 0 for &\l z E N, x, y E A and A is contained in the /-nucleus of

A. Hence, for all z G A, Rz is a derivation of /I. Let

#3 = (xz; all * G ^,z G A>

and note that K3 is ®(^)-invariant. Let B3 be a ®(/l)-invariant complementary

subspace to #3 in A and let x E B3. Hence, x z E K3 n B3 = 0 and #3 =

(x z; all x G K3, z G A>. Let z E B3 D A. Then xz G #3 n 53 = 0 and ^3

= <xz; all z,x G ^3). Now K3 = K3 and since K3 E N, K3 = 0. Hence,

N E Z.lf N ¥= R, then A/N contains a minimal nonzero ideal E/N such that

E/N is solvable. By the remarks preceding this proof, E2 C A, and since

N E Z, E is nilpotent, a contradiction. Hence R = N E Z.
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2. The Lie triple system case. A vector space A with trilinear composition

(a, b, c) -* [a, b, c] satisfying

(5) [a,a,b] = 0,

(6) [a, b, c] + [b, c, a] + [c, a, b] = 0,

and

(7) [a, b, [x,y, z]] = [[a,b,x],y,z] + [x,[a,b,y],z] + [x,y,[a,b,z]]

is called a Lie triple system. For x, y G A, the mapping D(x,y): z -» [x,y,z]

is a derivation of A and these are called inner derivations.

Proof of the Lie triple system case. Suppose that R "C Z. Let S be a

semisimple subsystem complementary to R [3, Theorem 2.21]. Let

2), = {D G <&(A); D: S -» S,D: R ^ 0)   and

2)2 = {D G %(A);D: S -» 0}.

We claim that 25(<4) is the direct sum of ideals 2)] and 2)2, each of which acts

completely reducibly on A. Then %(A) will act this way on A. Let D G 2)(<4).

Then D restricted to S can be extended to a derivation D of A, where

Z) = 2 D(xt,yi),

where *,-, y,- G A by [3, Theorem 2.18]. Since R C Z, x,, y, may be assumed

to be in S. Then D: S ^ S and, using (5) and (6), Z): R -* 0; hence,

Z3 = (D - D) + D where D - D G 2>2 and Z5 G 25,. Therefore, 25(4) = 25,
© 252. In the same manner, each element in 25(5) may be extended to an inner

derivation of A and, since R G Z, this extension is in 2),. Hence, to show that

2), acts completely reducibly on A, it is enough to show that 25(5) acts this

way on S. Since every derivation of S is inner [3, Theorem 2.11] and since S

is the direct sum of simple ideals [3, Theorem 2.9], we may assume that S is

simple. This result holds by [3, Theorem 4.1]. To show that 252 acts completely

reducibly on A, note that each linear transformation of R is a derivation

which, since R C Z, can be extended to an element of 252 • Hence, 252 acts in

the desired manner on A and, therefore, 25(4) does as well.

Conversely, suppose that 25(4) acts completely reducibly on A. Let

2) = (D(x,y); all x G R,y G A)    and

K = (zD(x,y) = [x,y,z]; all x G R,y,z G A).

Since R is 2)(^)-invariant [4, Lemma 5], K is also. Let J be a 25(^)-invariant

complementary subspace to K in A. If z G J, then zD(x,y) G K n J = 0.

Hence, K = (zD(x,y); all x G R,y G A,z G K). If z G AT,y G / and x

G R n J, then

zZ)(x,y) = [x,y,z] = -[y,z,x] - [z,x,y] = [z,y,x] = 0.

Hence, K = (zD(x,y); all z,x G K,y G A}. Therefore, [A,K,K] = [K,A,K]

= K, and since K G R and R is solvable, K = 0. Hence, zZ)(x,y) = [x,y,z]
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= 0 and x E Z. Hence, R E Z and the proof is complete.

Corollary. Let A be a Malcev algebra over afield of characteristic 0 and let

TA be the Lie triple system associated with A. If%iA) acts completely reducibly

on A, then ®(7^) does also.

Note that the converse of this corollary fails as is seen by the three

dimensional, nilpotent, nonabelian Lie algebra.
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