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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and
polished character, for which there is no other outlet.

A SHORT PROOF OF THE UNIQUENESS OF HAAR
MEASURE

DAVID L. JOHNSON

The purpose of this note is to give a brief proof of the uniqueness (up to a
positive multiple) of left Haar measure p (the existence of which we assume)
on an arbitrary Hausdorff locally compact group G. The approach used here,
employing the well-known device of an approximate identity, appears to be
more transparent than any that we have found in the literature (e.g., [4,
Theorem 29D, pp. 115-116] or [1, Theorem 1(B), pp. 15-16]). We remark that
the elegant uniqueness proof for the Abelian case [5, 1.1.3, p. 2] cannot be
improved upon; thus, our proof is of interest only for non-Abelian locally
compact groups. We also observe that it is possible to give a combined
existence and uniqueness proof (e.g., [2]).

We begin with some notation. Let » denote a measure on G and let f, g be
continuous functions on G with compact support. For such an f, let f'(y)
= f(y~Y); also, for x in G, let (f)(») = f(x~'). The convolution f * g is
defined as usual (using the Haar measure p):

M (f8)(x) = [ 1) 8(r™'%) du(») = w(S* *()
and the convolution » * f is the continuous function on G defined by
@ N = [ SO0 dr(y) = v(*(f):

Next, we recall two standard facts. First, there exists a (right) approximate
identity (g,) consisting of continuous functions on G with compact support;
that is, (g,) is a net with the property

®) v(f) =limp(f+g,)

for every f and every ». Second, by an application of Fubini’s Theorem [3,
Lemma A.2(iii), p. 179], it follows that

4) v(f+g)=n(f (v*g))

for every f, g and every ».
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THEOREM. If v is a left translation invariant measure on G, then v is a
complex multiple of p.

PrOOF. Let (g,) be an approximate identity; then for every f, (3) obtains.
Rewriting (3), using (4), yields

) v(f) =lim p(f+ (v = &),
for every f. However, since » is left translation invariant, we have
(6) (v * g)(x) = v(*(8,) = v(8):

for each x in G and each a. Consequently, (5) becomes
() w(f) =lim u(f (8,)) =limr(g,) - u(f) = (limr(g,))- p(f),

for every f. Finally, by choosing f so that u(f) is nonzero, it follows that
lim,r(g,) is equal to a constant ¢ and that » = ¢- p. Q.E.D.

ADDED IN PROOF. We should observe that the existence of a net (g,)
satisfying (3) does not depend upon the essential uniqueness of Haar
measure; in particular, the modular function is not involved. Indeed, if for
every compact symmetric neighborhood a of the identity we let g, be a
symmetric (g, = g,) positive continuous function on G supported in a with
pn(g,) = 1, then a straightforward argument using the uniform continuity of f
and the left translation invariance of u yields (3).
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