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ON THE RATE OF GROWTH OF THE WALSH
ANTIDIFFERENTIATION OPERATOR

R. PENNEY

Abstract. In [1] Butzer and Wagner introduced a concept of differentia-

tion and antidifferentiation of Walsh-Fourier series. Antidifferentiation is

accomplished by convolving (in the sense of the Walsh group) against a

function Q. In this paper we study growth and the continuity properties of Q

showing that fi is bounded from below by — 1, is continuous in (0, 1) and

grows at most like log 1/x as x —> 0. We use this information to study

continuity properties of differentiable functions.

Introduction. In [1], Butzer and Wagner introduced a concept of derivative

and antiderivative of Walsh-Fourier series. In this paper we are interested

primarily in the antiderivative.

Let Wn denote the «th Walsh function. Let fi be the a.e. defined function

whose Walsh-Fourier series is

(fi exists as an L2 function since l/K as in /2).Then convolution against fi with

respect to the Walsh addition on [0,1] defines an integral operator which in

the Butzer-Wagner theory plays the role of antidifferentiation.

It is the purpose of this paper to investigate the continuity properties and

growth properties of fi. Our main results are that fi is continuous everywhere

in [0, 1) except at 0 and at zero it grows at most like log 1/x. Furthermore, we

show that fi(x) ^ -1 for all x. This is interesting for, as commented in [2], fi

is not positive. Hence, the antiderivative of a positive function need not be

positive. However, from the above convolution with 1 + fi is positive and still

yields a concept of antiderivative. Hence, it is possible to get a positive

antidifferentiation operator.

Our main technique is to compare fi with the function

fiW = 2 ^JtW.
a:=o a + ]

The relationship between fi and fi is simple:

IfiW - m = | J, (jt-KTl)^ ^ J, i- FTT - !•
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(The series telescopes!) Furthermore, since the above sum converges absolute-

ly, B — fi is continuous in the Walsh sense so fl will be continuous whenever

Sis.
The advantage to studying fl over fl is that we can write down a formula

for fl. Specifically, we reason as follows. Let t E R, |r| < 1. Let Pit,x)

— 2jt=o '****■(•*)• This converges absolutely and uniformly in \t\ =\ 8

< 1 for all x.
In this paper we derive the following formula:

(0 P{t,x) - T37 5 (—£)
1     ' #=o \1 + t1 /

where x E (0,1) and x = 2/:=o 2~'*_1 is the diadic expansion of x (if x is a

diadic rational we take the finite expansion). From this formula, lim(_>1-7,(f, x)

exists. Hence, lim^i- J*0' P(s,x) ds exists. It follows that 2 WfcM/O^ + 1) is

Abel summable. Furthermore, Af^(x)/(A + 1) g -1 for all A. It follows

from the Hardy-Littlewood theorem [3, Theorem 4.22] that 2 WKix)/QC + 1)

converges for all x E (0,1), and equals f0 Pit, x). This allows us to obtain our

explicit estimates on fl.

We begin with the proof of (1) above. We consider the Wn as having been

extended periodically to all of R. Let

2N-\

pn(',x) = j2o tKWK(x).

Lemma 1.   If N ^ / g 0,

PNit,x + 2"('+1>) = /^,*)/V,(-'2',2'x).

Proof.

PNit,x + 2-<'+1)) = 22~' r*W5r(2-*+I))Wt(jc)
*=o

= 2 2"' yW2-(i+lfc(M'"+2'').
(=0    m=0

Now, observe that Wm+2Ui2'{i+l}) = (-1)' and that m + 2'7 = m + 27.

Hence, the above is

= 2 2_1 (-/2')/^2'iW 21 wmix)tm.
1=0 m=0

The proof is completed by noting that W2i,ix) = W^(2'jc).    Q.E.D.

Lemma 2.    Suppose x = 2a"=o 2-'* ««^ A is in > in_, > ;0 > 0. 77ieM

\   —  t "       1   —   ("^
^(^) = V^r n t~W-

1 «     K=0 1   + t2

Proof. Note that if x is an integer, WKix) = 1 for all K and, hence, PNit, x)
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is a geometric series which sums to (1 - t2 )/(l — t). Hence, by Lemma 1,

ZV(/,2-«0 = Vlfc°)PJH,+lH*~,»2<,~1 -°)

1_?2^-1_H2-o-)2^'^  ,  _ ,2* ,  _ ,2-q-

\-t l+t2^ I"'    l+/2'°-''

(Note that 2N~'0+X is even.) Hence, the formula is true if n = 0. Now, assume

it true for all integers less than n. Let x0 = x - 2~'n. Then

PN(t,x) = PN(t,x0 + 2"'») = />,„-i(/,xo)P^_,n+1H2,""1,2'»-1x0).

Since 2'"~xx0 is an integer, the -P/v-/„+i term equals (1 - t2 )/(l + f2'" ).

Applying the induction hypothesis to the other term and simplifying yields the

result.   Q.E.D.

We can now prove formula (1) above. If x is a diadic rational, (1) follows

from Lemma 2 by letting N -» oo, so we may suppose that we are using an

infinite expansion. Let x = 2 #=o 2-'* where 0 < z0 </><•••</,<•••,

and for each n G N let xn = 2at=o 2~'*- From the above,

n/      ^         1      A  /I -'2*"'\
^('>*») = TT77 IT   (--j^t).

1       ' K=0 \ 1 + tl       I

Since the series for P converges uniformly in x if \t\ < 1, P is continuous (in

the Walsh sense) in x and, hence, P(t,xn) -» ZJ(/,x). This proves convergence

of the infinite product and formula (1).   Q.E.D.

Corollary 1.    fi(x) =£ 0/or all x and, hence, fi(x) g -I for all x.

Proof. As shown in the introduction, fi(x) = J0l P(t, x) rfx, which is clearly
positive.   Q.E.D.

Corollary 2. 7«e/-e are constants C, anrf C2 such that |fi(x)| ^ C, log l/x

+ C2forallx G (0,1).

Proof. If a > 0, (1 - a)/(l + a) < 1. Hence,

1       '  1 + t2 l       ' K=0

Hence,

/•l 2*0"'   i

fi(x) =  I    Z>(f,x)<// g   2   -p ^ C,log2'»-1 + C2.
./o *=i A

But x g 22~'° = 2-('°-1). Hence, log 2'°_1 ^ log l/x, proving the claim for fi
and, hence, for fi.   Q.E.D.

Remarks. Corollary 2 could also be proven analogously to the technique

used by Yano [4] to obtain estimates on 2 ^a:/(^)"(0 < a < 1). However,

lower bounds do not seem to be so easily obtainable from Yano's technique.

Corollary 3. fi is continuous on (0,1), and is unbounded as x -* 0+.
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Proof. Note that if x = 2*=o 2~'K as before, then

i        i   _ t2'«-[ 2'o-'

PQx) g-—T S   2   tK 3i 2'o"'        for t E (0,1).
1  ~ '  I  + t2 K=0

Also note that

fQPU,x)il-t)dt^^{-^-^)wnix)

is an absolutely convergent Fourier series and, hence, is Walsh continuous.

Now write xn = 2a:=o 2~'k- II follows trivially from (1) that P(t,x)

= Pit,x - xn)Q — t)Pit,xn). Hence, if y is such that^ = xn, then

I r[
P(t,x) - Pit,y)dt

l7o

i rl i
=     I    {PQx - xm)Q -t)- Pit,y-yn)il - t))Pit,xn)dt\

l7o I

As « —> oo this tends to zero from the continuity of J0' Pit, x)(l - /)c(/.

The unboundedness is trivial since

fl(2-(7+i)) = r1 —l_i^—Aj
7o  (1 + t2')i\ - t)

which —> oo as / —> oo.    Q.E.D.

Remarks. Ladhawala has constructed a more direct proof of the continuity

of fl following the proof that fl is in L1 given in [1]. Note, incidentally, that

fl G L1 follows trivially from fl G L2.
Now, one of the basic properties of differentiation is that if /

G L'(R) and lim,_0 (/(• +/) - /(•))/? exists in L1, then/is absolutely contin-

uous. (One simply integrates this limit to obtain/.) The corresponding theorem

for Walsh differentiation is false. However, the following is true. The first part

was pointed out to us by Ladhawala.

Corollary 4. /// G L1 ([0,1]) and Df exists in the L1 sense isee [1]) and is in

L pfor some P > 1, then f is Walsh continuous. However there exist functions in

^([0,1]), differentiable in the L1 sense, which are not continuous in the Walsh

sense.

Proof. By results of [1], / = fl * Df -1-/(0) (* in the Walsh sense). Since

log l/x is in Lq for all 1 ^ q < oo and Lp convolved with I? is continuous iP

and q conjugate exponents), the first claim follows

To prove the second part, note that since fl is in L2, fl * L1 E L2 E Lx.

From results of [1], every element of fl * L1 is differentiable in the L1 sense,

with derivative in L. Hence, if our theorem is false, convolution by fl maps L1

into the space of Walsh-continuous functions on [0, 1]. By the closed graph
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theorem this mapping would have to be continuous from Lx into the uniform

topology on C([0,1J). In particular,/-* fi */(0) = /0'/(x)fi(x)Jx is contin-

uous in L, implying that fi is essentially bounded, which is false by Corollary

3.    Q.E.D.
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