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NUMERICAL RANGE OF A WEIGHTED SHIFT
WITH PERIODIC WEIGHTS

WILLIAM C. RIDGE

Abstract. Calculation of the numerical range of a weighted shift is

reduced to the solution of a polynomial equation when the weights form a

periodic sequence, or approach a periodic sequence from below.

Introduction. A weighted shift on I2 or /+ is a linear operator S defined by

Sen = snen+x where {e„} is an orthonormal basis, and {sn} a sequence of

complex numbers. The numerical range of an operator S is the set of complex

numbers (Sx, x) where ||x|| = 1; this is denoted W(S). For definiteness we

assume here a one-sided shift, indexed by positive integers; the proofs and

results are the same for a two-sided shift.

Then we are given

x — xxex + x2e2 + ■ ■ ■,    Xj complex,        2 I •*; I   < °°'■>

Sx = Xi sx e2 + x2 s2 e^ + ■ ■ ■.

We begin with some simple facts about weighted shifts [1].

(1) S is a bounded operator if and only if {sn} is a bounded sequence, and

then 11511 = sup|j„|.
(2) S is unitarily equivalent to a shift with weights t, whenever |/(-| = |j,-| for

all /'. In particular, S is unitarily equivalent to cS whenever \c\ = 1.

(3) Therefore W(S) has circular symmetry about 0: cW = W whenever

|c| = 1.

(4) Since W is convex, it follows that W(S) is a disk centered at 0; its radius

w(S) is the numerical radius of S.

It is an easy exercise to find W(S) in some special cases. For example:

(5) If \sn\ < AT for all n, and \s„\ -> K, then W(S) = K.

By (2) it suffices to consider shifts with real nonnegative weights, sn > 0, and we

shall do so.

Theorem 1. If{sn} is a periodic sequence, of period r, then

w(S) — max{si xx x2 + S2X2X3 + • • • + srxrxx:

x,  real,    xx + • • • + x2 = 1},

and finding this is equivalent to solving a polynomial equation of degree r.

Received by the editors April 8, 1974 and, in revised form, April 18, 1975.

AMS (MOS) subject classifications (1970).  Primary 47A10, 47B99.

Key words and phrases. Hilbert space, operator, numerical range.

© American Mathematical Society 1976

107



108 W. C. RIDGE

Proof. First consider a sequence x consisting of the finite sequence of

complex numbers {xx,x2,... ,xr) repeated k times, with O's thereafter. Then

Sx = {0,[sxxx,s2x2,... ,srxr], (repeated  k times), 0, 0, ...},

iSx, x) = kisxxxx2 + s2x2x$ + • • ■ + srxrxx) — srxrxx,

ix,x) = ki\xx\2+\x2\2+--- + \xr\2),

and for large k we see that (Sx, x)/(x, x) can be made arbitrarily close to

S\ Xi X-y ~r St -^9 "^3 * " "        ^r ^r *^1

O I      |2   ,   |      [2~7 ~~i      [2       '
1*1 I    + 1*2 I    + ••• + I*, I

Therefore w(5) is at least equal to

ma.x{\sxxxx2 + • • • + srxrxx\: x(-complex,  |jc, |2 + • • • + |xr|2 = 1}.

By multiplying xk by  e'9k we may  make  these  components  real  and

nonnegative: this gives the problem:

Maximize sxxxx2 + j2*2*3 + ■ • • + srxrxx

subject to x2 + ■ • ■ + x2 = 1, sk, xk real .

The use of Lagrange multipliers gives the system:

S.Xr   i   Sx X2 :^  AXj

sx xx + s2x^ = Xx2

sr_xxr_x -j- srxx == Kxr.

Elimination of the xt gives a polynomial equation in X of degree r; x2, ..., xr

are found by substitution (in terms of xx), and xx is then found by the relation

x2 + • • • + x2 = 1.

We now establish that w(S) is no greater than this maximum value of

sx Xx X2   i   ' ' '   i   S- Xr xx.

Lemma. // ak, bk are nonnegative constants with bk ¥" 0, then

bl+b2+...   ^S\fbk

whenever the left side is defined.

Proof. We first show this for finite sums. If a/c > b/d, then

a + b      a + ad/c _ a

c + d ^    c + d        c

and the result for finite sums follows by induction. Then

ax + a2 + ■ ■ ■ + a„ ^ ak ak
,'     ,    ,--r-jr < max -+ < sup -£
bx + b2 + ■ ■ ■ + b„      k<n bk      k/x bk
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and hence the lim sup of the left side satisfies the same inequality; this proves

the lemma.

Resuming the proof of Theorem 1: suppose |xj = 1, and write the compo-

nents of x as

x = [axxax2 ■ --a^a^a^ ■ ■ ■ a2r; ... },

ay complex. Then

\(Sx,x)\ = \sxaxxaX2 + ■ ■ ■ + sraXra2X + sxa2xa22 + ■■■ + sra2ra3x + • • • |

(x,x) |an|2 + ... + |flj2 + \a2l |2 + ... + \a2f + ...

\s\aklak2 +  ••■ + srakra(k + \)\\
(1) < sup-■--2-■--j-

k \akx\   + ••■ + \akr\
and

\s\ak\akl +  •■■ + Srakra(k + \)r\

M <  ^P I-\2 4.  I |2 4.-4^^ •*     l«(A: + l)ll    +  l«*2l     + ••■ +  l«fcrl

Inequality (1) follows from the lemma, and (2) follows by deleting \axx |   from

the denominator (thus increasing the value of the fraction), regrouping terms

of the denominator, and applying the lemma.

Setting

x, = max(\akl |, \a(k+x)x |),    Xj = |a^-|    for/ = 2, ..., r,

we see that

|(Sx,x)| , 2 2 1 ,,
—:-r- < max^, X] x2 + ■ ■ • + irxrX!:  Xr + ■ ■ • + xr = l,x, real],

(X, Xy

and therefore w(S) is equal to this maximum value; this completes the proof

of Theorem l.

Theorem 2. If sk < pk and sk — pk —> 0 as k —* oo, wAere {/^J is a periodic

sequence with period r, then

w(S) = max{/7, xxx2 + ■ ■ ■ + prxrxx: xx + ■ ■ ■ + xj = l,x, real}.

Proof. Given e > 0, letting T be the shift with weights pk, let x be a unit

vector such that (7x,x) > w(T) - e. Choose n such that \sk— pk\ < e for

k > n. Let y be the unit vector with yk = 0, k = l, ..., n; y£+/I = xfc, A:

= l, 2, .... Then (Ty,y) = (7x,x) > w(F) - e.

Now

l|Fy- Sy\\ < supl/7^ -jj < e
A:>n

so |(Fy,y) - (Sy,y)| < e and so (Sy,y) > w(T) - 2e.

Therefore w(S) > w(T). Since 0 < sk < pk, we easily have w(S) < w(T),

and so the two are equal. By Theorem l,

w(T) = max{/j, x, x2 + • • • + prxrxx:  x2 + ■ ■ ■ + xj = l,x, real) - w(S);

this proves Theorem 2.
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Examples. (1) If r = 2 the weights are a, b, a, b, ... ; we are to maximize

(a + b)xx x2, that is, maximize xx x2 subject to x2 + x\ = 1. The solution is

xx = x2 = l/\/2, (a + b)xxx2 = ia + b)/2, and so the numerical radius is

the average of the two weights.

(2) If r — 3 the weights are a, b, c, a, b, c, ...; we must maximize axx x2

+ bx2 x3 + cx3 xx with x2 + • • • + x2 = 1; we have the system

ajc2 + cx3 = Ax],    a^i + bx^ = r\x2,    bx2 + cxx = Xx3,

which (if xx # 0) leads to the cubic equation A3 - (a2 + b2 + c2)X - 2abc
= 0.

Notes. (1) The numerical range is always a disk about 0, of positive radius

except in the trivial case where all the weights are zero.

(2) If any weight is zero then the disk is closed; for (assuming sr = 0 for

example) then iSx, x)/ix,x) is actually equal to the expression (1), which in

turn attains its maximum on the compact sphere (2).

(3) For weights (1, 1,1, ...) the disk is open; for ICS*,*)! = 1, |x| = 1,
would imply Sx = kx, \k\ = 1, which is impossible.

(4) I surmise, but have yet to prove, that the disk is open whenever all the

weights are nonzero; that is, iSx,x) cannot attain its sup w(5) for |x| = 1.
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