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EVERY FINITE GROUP IS THE
AUTOMORPHISM GROUP OF

SOME FINITE ORTHOMODULAR LATTICE

GERALD SCHRAG

Abstract. If L is a lattice, the automorphism group of L is denoted

Aut(L). It is known that given a finite abstract group H, there exists a finite

distributive lattice D such that Aut(D) £= H. It is also known that one

cannot expect to find a finite orthocomplemented distributive (Boolean)

lattice B such that Aut(B) s= H. In this paper it is shown that there does

exist a finite orthomodular lattice L such that Aut(L) s H.

1. Introduction. An important question in orthomodular lattice theory from

the physicist's point of view is whether or not every group is the automorphism

group of some orthomodular lattice. As indicated in the title of this paper, our

purpose is to give an affirmative answer for the finite case. Corresponding

results with cardinality bounds for lattices and distributive lattices can be

found in [6] and [1], respectively. A corollary to our result is that every finite

group is the automorphism group of a quantum logic. The relevance of

orthomodular lattice theory to quantum mechanics can be found in [2], [10],

[11], and [12].

2. Preliminary results. Prior to the development of the main result, several

definitions will be reviewed.

An incidence structure is a triple S = (p, 93, /) where p, 93, and / are sets with

p n 93 = 0 and / C p x 93. The elements of p are called points and those of

93 are called blocks. If (p,B) G /, we say p and B are incident. We usually

write p I B or B I p.

The dual structure S* = (p*, 93*,/*) of S is defined by p* = 93,93*

= p and (B,p) G /* if and only if (p,B) G /.

For every p G p, we denote by [p] the number of blocks which are incident

with p. For/?, q G p, we define [{/?,<?}] to be the number of blocks incident

with both p and q. A partial plane is an incidence structure such that

K/7'^}] = 1 f°r distinct points/? and q.

An automorphism of an incidence structure S = (p, 93, /) is a bijection

o-:t)U93^pU93 such that/? I B if and only if pa I Bo for all/? G p and B
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G 93. The set of automorphisms of 5 forms a group which is denoted by

Aut(S).
A graph G consists of a finite nonempty set V of points together with a

prescribed set A of unordered pairs of distinct points of V. Each pair x = [u, v]

of points in A" is a line of G. We say that u and v are adjacent points and that

u and x are incident as are v and x. A cycle of length n in a graph is a sequence

(Po>P\> ■ ■ ■ ,Pn) °f distinct points except that/?0 = /?„ and such that/?,., and/?,

are adjacent (i = 1,2,... ,n). The g/WA of a graph (7, denoted g(G), is the

length of a shortest cycle (if any) in G.

An automorphism of a graph G is a bijection from the set of points of G

into itself which preserves adjacency. The group of automorphisms of G is

denoted by Aut(G).
An orthogonality graph is a pair (A, _l_) where _L is a symmetric irreflexive

relation on the set X.

A space is a pair (X, S) where A1 is a nonempty set and S is a family of

nonempty subsets of X. A weight on a space (A", S) is a mapping m: X -» [0,1]

such that 2a e£ m(a) = 1 f°r aN E G &. For any space (A, S) and for each

x G A, define &x = {E: E G S and x G £} and S(x) = U{£: E G Sj.

The ^t/a/ space (X*,&*) of a space (A, S) is defined by A* = S and S*

= {Sx::xGA}.A space (A, S) is an orthogonality space if

(1) U {£■:£■ G S) = A,
(2) E G S and £ G S* implies £ $ S(x),
(3) M Q X and M C n{S(x): x G A/} implies that A/ C E for some

£eS.
It is shown in [7] that every orthogonality graph (A, J_) determines a space

(A, S) and conversely. Thus let 0(A, _l_) denote the set of all J_-sets of (A, S).

(Recall that M C A is a _L-set if ij 6 M and x # y imply x _L >\) For

each A/ C A define A/-1 = {x G A: x ± w for all w G M\ and A/-1 -1

= (A/-1)"1". By the quasilogic of (A, S) (as of (A, _L)) we mean the set

£ = (Z)-1-1-: D G 0(A, _]_)} partially ordered by set inclusion. We write £

= £(A,S) = £(A, _L). A quasilogic £ is a logic if M G £ implies A/-1 G £. An

orthogonality space (A, S) such that £(A, S) is a logic is called an orthocomple-

mented space. An orthogonality space (A, &) is point closed if {x}x±

= {x} for all x G A. We write {x}1- 1asxli.

By a state on a logic £ = £(A, S) we mean a mapping a: A ^> [0,1] such

that a(A) = 1 and if A/ C A/-1, then a(A/ V N) = a(Af) + a(A^) for any A/,

N G £. A set S of states on £ is full, if for M, N G £, A/ C A/ if and only if

o(A/) 2i a(7V) for all a G §>. A set <¥ of weights on an orthogonality space (A,

S) is said to be full, if for any x, y G A, x _L 7 if and only if w(x) + w(y)

^ 1 for all w G <¥. A pair (£, S) where § is a full set of states on a logic £ is

called a quantum logic.

Define (A, S) to be an F-space if every maximal scattered set intersects every

maximal orthogonal set (a subset S of A is scattered if x, y G S implies x

G y1 and a subset T of A is orthogonal if T G (9(A, J.)). Define (A, S) to be

a complete Dacey space ii K Q X and Z> a maximal orthogonal subset of A"x

implies D±J- = K^ .

Let (A, S) be an orthogonality space. Choose an indexing set / which is in

one-to-one correspondence with S such that / D A = 0 so that S = {£,: i
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G /}. Let Y = X U I. Define ~ on Y by x ~ y if and only if x _L y for

x, y El X and x ~ i if and only if i ~ x if and only if x G Et for x G A", /

G /. Then (F, —) is an orthogonality graph which determines an orthogonal-

ity space called the Dacification of (A", &).

The automorphism group Aut(Ar, S) of (X, S) is the automorphism group of

its orthogonality graph.

Recall that a lattice is a set L together with a partial ordering ^ on L such

that for any x, y G L, the supremum and infimum of x and y (written x V y

and x A y, respectively) both exist. An involution lattice is a lattice (L, Si) in

which there exists a map ': L —» L such that

(1) e ^ /in L implies/' ^ e',

(2) e = e" for all e G L. If furthermore L is bounded and if for e-JE L, e'

is a complement of e, then L is an orthocomplemented lattice.

An orthocomplemented lattice (L, g,') is an orthomodular lattice if for

e,/£L,^/,we have/ = e V (/ A e').

If L is an orthomodular lattice, an automorphism of L is a bijection from L

to L which preserves V, A, and '. The set of all automorphisms of L is a group

called the automorphism group of L and is denoted by Aut(L).

We point out that, since the space (X, S) is an incidence structure, we can

consider the dual structure (X, S)* of (X, S) and the dual space (A"*, &*) of (A",

S). Note that since (X*, $*) is also a space, it too can be considered as an

incidence structure. One naturally wonders when (A",&)* s= (A"*,S*). This

question is partially answered in 2.1, the proof of which is straightforward. As

in [7], we define the space (A", S) to be distinguishing if &x # S whenever

x =£ y.

2.1 Lemma. Let {X, S) be any space.

(1) The space (X*, S*) is distinguishing.

(2) If(X, S) is distinguishing, then (X*,&*) at (X,S)*and, hence, (A"*,S")
a (X,$)" = (*,£).

(3) If (X, S) is a partial plane such that [x] is 2 for all x G X, then (X, S) is

distinguishing and, hence, (A-*,S*) =s {X,&f and(X",&" ) ss (A', S).

In an incidence structure S = (p, 93,/), a loop of order n is a chain

(x0,jh:i ,x2,... ,x2n-l,x0) where x2A. G P and xlk+x G 93 for k = 0, 1, 2, ...,

« - 1, and where x, # xy for i,/ = 0, 1, 2, ..., 2n — 1, and i # /

2.2 Lemma, yl/i orthocomplemented space {X, S) « a complete Dacey space if

and only if £(Ar, S) is a/i orthomodular lattice.

Proof. Straightforward.

2.3 Lemma. Let S = (p, 93, /) be an incidence structure. Then there exists a

loop of order n in S if and only if there exists a loop of order n in S*.

Proof. If (x0,x{,x2,... ,x2n-i,x0) is a loop of order n in S, then

(x1,x2,x3,... ,x2n_l,x0,xl) is a loop of order n in S* and conversely.

2.4 Theorem. Let G be a graph and p G G.

(1) G* is a partial plane such that [q] = 2 for all q G G*.
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(2) // G has girth g(G) =S 4 and \ p] is 2, then G* is an orthogonality space.

(3) // G has girth g(G) S 5 and [p\ =S 3, then G* is a point closed complete

Dacey space.

Conversely assume (A, £) is a finite space which is a partial plane such that

[x] = 2 for all x G A. Then (A, £)* =S (A*, S*) and (A, £)* is a graph.

(4) If (A, £) is a/i orthogonality space such that | E | i£ 2 /or a// £6 6, //ie«

g((A,£)*) is 4.
(5) // (A, S) is a complete Dacey space such that \ E | =S 3 for all ££g, then

g((A,£)*) i= 5.

Proof. (1) This follows directly from the definitions of graph, partial plane,

and [q].

(2) Now G* ¥= 0 since [p] S 2 for all p G G. For each a G G, let yfa

= {x: x G G* and x I a}. Now Aa # 0 since |/4a| = [a] = 2. Thus (G*, £)

is a space where £ = {y4fl: a G G}. We show that the conditions of 1.3 of [7]

are satisfied.

Now £ G £ if and only if £ = yla for some a G G. Let x G G. Since

[x] = 2, we have x I a for some a G G so that x G Aa for some a G G.

Hence G* = U{£: £ £ 6).
Let M, N G £ and M ¥= N. Then since G* is a partial plane, there exists

a, b G G such that a # b, M = Aa and N = Ab. Since [a] S 2 there exists

x G G* such that x I a. If x I" o we are through. If x I b, there exists _>> G G*

such that_v ¥= x and j> I a, since [a] i£ 2. But ylii since G is a graph. Thus

M § N.

Finally assume M C G* and for all x, >> G A/ there is an Nxy G S such

that {x,j>} C Nx . We must show that there exists an N G & such that

M C N. If |A/|' ^ 2, choose W = A^^. Let \M\ g 3. Fix x, y G A/ and
suppose A/ $ A for all AGS. Then for every N G S there exists z El M

such that z G A. Hence z G A7^. By hypothesis there exist A/xz

G & and A,,z G S such that (x,z) C A/x>2 and {y,z) C A^z. Since G* is a

partial plane, Nxz ¥= N Thus (x,Nx ,y,Ny2,z,Nxz,x) is a loop of order

three. This contradicts the girth condition of G.

(3) Now assume G has girth g(G) is 5 and [/?] i£ 3. Then by the above

proof, (G*, S) is an orthogonality space. We have \M\ is 3 for each M

G £ and | Mx n M2| ̂  1 for all A/j ^ A/2 where Mx, A/2 G £. Thus, by 1.4 of
[7] and Theorem 1 of Dacey [3], £(G*, S) is an orthocomplete orthomodular

poset. By the Remark of Dacey [3], £(G*, £) satisfies Convention 1 of Greechie

[8] since [p] ^ 3 and since (G*, £) is a partial plane. Since g(G) g 5, we have

by 2.3 that (G*, £) has no loops of order four. By the Remark of Dacey [3],

£(G*, 6) has no loops of order four and, hence, is an orthomodular lattice by

the Atomistic Loop Lemma of Greechie [8]. By 2.2, (G*, £) is a point closed

complete Dacey space.

Conversely assume that (A, £) is a space which is a partial plane such that

[x] = 2 for all x G A. It is obvious that (A, £)* is a graph. We denote this

graph by H.  By (3) of 2.1,  we have  that (A*,£*) = (A,£)*.

(4) Now assume that (A, £) is also an orthogonality space such that

\E\ =£ 2 for all E G £. Making repeated use of the fact that \E\ is 2 for all £

G £ and [x] = 2 for all x G A, it is easy to show that (A, £) contains a loop
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and, hence, that H contains a cycle by 2.3. No graph can contain a 1-cycle or

a 2-cycle. Thus suppose H contains a 3-cycle, say C = (a,x,b,y,c,z,a) so that

all the elements of C are distinct and x X c, y X a, and zXb. Hence, in (X, S)

there exists noiVeS such that M = [x,y,z] C N. But any pair of points of

M are in a block. This contradicts condition (3) of 1.3 of [7].

(5) Finally assume (A", £) is a complete Dacey space such that | JET |

g 3 for all E G S. Then since [x] = 2 for all x G X, we have that £(A", S)

satisfies Convention 1 of Greechie [8]. Hence, every loop of (A', S) is of order

g 5. This says that g(H) g 5.

3. The main result. Using the techniques of Frucht [5], the following result

can be easily proven.

Figure 1

3.1 Lemma. The graph Gt given in Figure 1 has girth five and the identity

permutation as its automorphism group.

3.2 Lemma. Let L be any atomic orthocomplete orthomodular lattice. Then

Aut(L) = Aut(y4, ±) where A is the set of atoms of L.

Proof. Let a G Aut(A, J_) and a G A. For x G L, define a'(x) =

\/a^xa(a), which exists since L is orthocomplete. Using the fact that A is join-

dense as in [3], it is routine to show that a' G Aut(L) and a —> a' is a group

isomorphism.

3.3 Lemma. Let {X, S) be a point closed complete Dacey space. Then
Aut(A',S) ss Aut(£(A-,S)).

Proof. By 2.2, £(X, S) is an orthocomplete orthomodular lattice. It is also

atomic and by the Remark of Dacey [3], (A",£) a (A, _L) where A is the set

of atoms of £(X, S). By 3.2 we have Aut(A",S) ss Aut(yl, J.) ££ Aut(£(A\S)).

3.4 Theorem. Let H be a finite group. Then there exists a finite atomic

orthomodular lattice L such that Aut(L) = H.

Proof. If H is the identity permutation /, let L = {0,1}. Thus suppose

H ¥= I. By 1.2 of Sabidussi [13], there exists a regular graph Fx of degree five

such that Aut(fj) ss H. Suppose Fx has q lines. From Fx we construct the

subdivision graph F2 as follows. For every line [u,v\ of Fx, add a point xt and

replace the line [u,v\ by the two lines [u,xt] and [v,Xj] where i = 1, 2, ..., q.

It is apparent that Aut(-fj) ss Aut(.F2).
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From £2 construct another graph G as follows. For ;' = 1, 2, ..., q, we

attach the graph G, to £2 by identifying the point x, of G, with the point x, of

Let

A = {x: x is a point of £2 which was orginally in F\],

B = {x: x = x,}, and

W{ = {x: x is a point of G,/{x,}}.

Note that deg(x) = 5 if x G A, deg(x) = 4 if x G £ and deg(x) = 3 if x

G Wt. Note also that g(G) = 5 since giGj) = 5 and g(£2) ^ 6.

Let a G Aut(G). By 3.1, no points of Wi are permuted among themselves

by a. Consideration of the degrees of points of G shows that a(A) = A, a(B)

= B, and a(Wj) — Wj if and only if a(x,) = Xj in which case each point of Wi

is taken by a into the corresponding point of Wj where i,j = 1, 2, ..., q (viz.

a(a,) = Oj, etc.). Thus Aut(G) = Aut(£2). By Theorem 14.1 of Harary [9], we

have Aut (G*) ss Aut (G) and by 2.4(3), we have that G* is a point closed

complete Dacey space. By 3.3, we have Aut(£(G*)) =* Aut(G*). Collecting

our results we have

Aut(£(G*)) s Aut(G*) a Aut(G) =£ Aut(£2) a Aut(/J) a H.

Since £(G*) is an orthomodular lattice by 2.2, the theorem is proved.

3.5 Corollary. Let H be a finite group. Then there exists a finite quantum

logic Q such that Aut(Q) =s H.

Proof. Let G* be as in 3.4. Let D(G*) be the Dacification of G*. Clearly

Aut(Z)(G*)) = Aut(G*). Now the point closed complete Dacey space D(G*)

is also an £-space, being the Dacification of a complete Dacey space and,

hence, admits a full set of weights. By 1.6 of [7], £(Z)(G*)) admits a full set of

states. Thus £(Z)(G*)) is a quantum logic. By 3.3, Aut(D(G*))

=s Aut(£(Z)(G*))) and the result obtains.

As a final remark, we observe that L is not necessarily unique in 3.4 as can

be seen by observing that Aut(G32) = Aut(25) = S5. Here S5 is the group of

all permutations on five elements, 25 is the orthomodular lattice of all subsets

of a five element set, and G32 is the well-known orthomodular lattice of

Greechie [8].
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