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CONJUGACY IN ABELIAN-BY-CYCLIC GROUPS

JAMES BOLER

Abstract. It is shown that each finitely generated torsion-free abelian-by-

cyclic group has solvable conjugacy problem. This is done by showing that

solving the conjugacy problem for these groups is equivalent to a certain

decision problem for modules over the complex group algebra of an infinite

cyclic group.

1.1 Introduction. Let G be an abelian-by-cyclic group. That is, G has an

abelian normal subgroup A with G/A = T cyclic. If G is finitely generated, it

can be recursively presented, so it is meaningful to ask whether G has solvable

conjugacy problem. Our aim is to answer this question affirmatively when G

is torsion-free. More precisely, we prove

Theorem 1. Let A be an abelian normal subgroup of the finitely generated

group G. If G/A = T is cyclic and A has no elements of finite order, then G has

solvable conjugacy problem.

1.2 Preliminaries. We use the standard notation

xy = y>    xy,        [x,y] = x~xy~x xy.

If R is a commutative ring with identity and T is a group, RT is the R-

algebra which is additively the free Z?-module with basis T, with multiplica-

tion induced by the multiplication in T. In particular, ZT is the integral group

ring of T and CT is the complex group algebra of T. If T is infinite cyclic, C7"

is a principal ideal domain.

Let A be an abelian normal subgroup of a group G and let T = G/A.

Conjugation in G induces an action of T on A which gives A the structure of

a Zr-module. If we write A additively, then at = g~x ag where g G G is such

that gA = t.

If G is finitely generated and T is finitely presented, A is finitely generated

as a Zr-module.

If T is infinite cyclic, the short exact sequence 0—>4—>G-»r—>1 splits,

so that G is isomorphic with the semidirect product A]T of the ZT-module A

by T. Thus T may be regarded as a subgroup of G.

If A is a ZT"-module, A ®z C becomes a CT-module via (a ® l)t = at ® 1.

If A is generated as a ZT-module by ax, ..., ak, A ® C is generated as a CT-

module by ax ® I, ..., ak® 1. If A is torsion-free, the map a i-» a ® 1 defines

an embedding (of abelian groups) of A into A ® C.
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1.3 A module-theoretic decision problem. Let R be a commutative ring with

identity, T a group and A a finitely presented 7? r-module. We say A has

solvable conjugacy problem if there is an effective procedure for determining

whether, for a and b in A, there is f G 77 with at = b.

Theorem 2. Let T be cyclic and A a finitely generated ZT-module without

elements of finite order. Then A has solvable conjugacy problem.

To prove Theorem 2, notice first that if 77 is a finite cyclic group, A is finitely

generated as an abelian group and so A]T is polycyclic. By [2] /I]77 has solvable

conjugacy problem, so A has solvable conjugacy problem. Thus we may

assume 77 is infinite cyclic.

Now, since A is torsion-free, the map a \-> a ® 1 induces an embedding of

A into A <8> C, and it is enough to show that the CT-module A <8> C has

solvable conjugacy problem.

Since C77is a principal ideal domain, there is a decomposition

A ® C = Ax ® ••• ® Ak

where each Aj{l g /' § k) is a nonzero cyclic submodule of A ® C. Clearly,

then, it is enough to show that a cyclic Cr-module has solvable conjugacy

problem.

Let Aj « CT/Jj (1 2i i = k). We distinguish between the cases /,

= (0) and Jj * (0).

1.4 Free submodules. If Jt = (0), Aj s=w CT is a free submodule of rank 1.

To see that C77 has solvable conjugacy problem, let t be a generator for 77.

Then there are unique representations

a = at* + • • • + cpts>,   b = dxtw* + --- + dqtw*

with

0 * c,: G C   (l^i'S;)    and   *,<•••< s,,

o#4ec  M/<?),   w, < ■ • • < w,.

To decide whether at1 = b for some I E Z, simply notice that the only

possibility for / is wq - sp. It is clearly possible, for a fixed power tl of t, to

effectively decide whether at1 = b.

1.5 Finite-dimensional submodules. If Jt # (0), dimc/l, = « < oo. The ac-

tion of a generator f of T on a basis of the vector space Aj yields an invertible

nX n matrix M in the usual way. Notice that the matrix M is effectively

computable from a presentation of Aj.

Recall that if G is a finitely presented group and the word problem is

solvable for some finite presentation Px of G, then it is also solvable for any

other finite presentation P2 of G (cf. [4]). A similar argument shows that if the

conjugacy problem is solvable for some finite presentation Px of a C77-module

A, it is solvable for any other presentation P2 of A. Because of this we may

assume that the module A-t is presented so that the matrix M is in Jordan

canonical form (cf. [3]). Thus
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where each Jt (1 g i ^ q) is of the form

Ix    1    •     •••    0\
0   A    1     •••    0  1

Ji=     .•

.1

\°.M
Let

a = j i and    b =     ■     , ah b, G C   (1 < i < «).

W        \*»./
Our aim is to show there is an effective process for determining whether

M' a = b for some positive integer r. Since

"-(VJ
it is not hard to see that we may assume Ac = 1 so that M can be taken to be

the n X n matrix

Ik   1   0   •••   o\
0   A    1     •••     •

M =.       = XI + S

\o: : ::: II
where

/  0    1    0    •••    0 \

0   0    1     •••    0

S =        .      .

\i: : :::!/
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Here, X =£ 0 since M is invertible.

Mr = ixi + sy = £ tt)\r-ksk.
k=0

Since 5" = 0, we have for r ^ n,

nr =   2  (k)X~kSk.
A:=0

To effectively decide whether Mra = 6 for some r, then, we must be able

to decide in a finite number of steps whether there is a solution to the system

of equations:

(1)      Xrax+   r\r-la2   +.      +   (/,) Xr~n+X an   =     bx,

(2)       •       xra2    +.    + (n:2n'-"+2«„ =   b2,

in- I) Xran_x    + rXr~la„    =    bn_x

in) Xran       =     b„.

We can obtain a solution as follows. Suppose first that |A| ¥= I, and

consider equation (/?): Xan = b„.

As r increases without bound, | X*" j either increases without bound or

approaches 0. Either way, if a„ ¥= 0 there are only finitely many values of r

which we need check and we can check each of these values simply by

computing M'a. If a„ = 0, consider equation (n — 1), which becomes Xran_x

=  bn-\■

Again, considering the cases an_x # 0 and an_x = 0, we can inductively

obtain a decision in a finite number of steps.

Now assume |A| = 1. By an induction argument, we may assume an # 0.

Consider equation (n — 1): Xran_x + rXr~lan = bn_x. Since a„ ¥= 0 and |X|

= 1, \Xran_x + rXr~]a„\ increases without bound as r increases without

bound. Thus, there are again only finitely many values of r for which we need

compute Mra.

We have shown that we can effectively decide whether Mra = b for r g 1.

By considering (A/~')r = M~r, we can decide in a finite number of steps

whether Mra = b for any r E Z. This completes the proof of Theorem 2.

1.6 Proof of Theorem 1. Let G, A and T be as in the statement of Theorem

1. We have seen that we may assume 77is infinite cyclic, so that G = A]T. Let

g\, g2 E G. If g] ¥= g2mod A, then gx and g2 are not conjugate in G. Thus

there are unique representations

gx = as   and   g2 = bs       ia,b E A,s E T).

To decide whether gx is conjugate to g2 by an element g3 = ct (c G A,t

E T), we must check whether gxl = ias)c — b. Now

(asf = a'ic-hc)' = ia'c-'cs~u)s.
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If we write A additively, we have gx conjugate to g2 if and only if there is a

solution c G C, t G T to the equation at + (s~x — l)r = b.

When we look at this equation modulo the normal subgroup N of G

generated by s (notice that N n A is the submodule of A generated by

(s~x — 1)), we see that there is a solution if and only if at = b mod N.

If N ¥= 1, then G/N is polycyclic and so has solvable conjugacy problem. If

N = I, then s = 1 and invoking Theorem 2 proves that G has solvable

conjugacy problem. This completes the proof of Theorem 1.
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