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EXISTENCE OF INVERSES AND SQUARE ROOTS IN
LOCALLY BANACH SEMIGROUPS WITH IDENTITY1

ROBERT C. ESLINGER

Abstract. Let S be a multiplicative topological semigroup with identity e.

Suppose D is an open subset containing e and A is a homeomorphism from

D onto a Banach space B with h(e) = 0. Define the function P

by P(x, y) = h[h~l(x) ■ h~l(y)]. A new implicit function theorem is ap-

plied to the function P to show the existence of inverses and square roots of

elements in a neighborhood of the identity. It is assumed that P satisfies the

following condition: There exist a one-one function A from a subset of B

into B and positive numbers r, M, and c such that

(i)   if 11*11 < r then x E dom(A ~')and \\A -l(*)ll < M\\x\\,
(ii)  cM < 1, and

(iii)   if ||*,.||, ||y,-|| < r (i = 1, 2) then (x„yj) G dom(P) (i,j = 1,2),

\\P(xx,yi) - P(xx,y2) - A(yx - y2)\\ < c\\yx - y2\\,

and

\\P(xx,yx) - P(x2,yx) - A(xx- x2)\\ < c\\xx - x2\\.

1. Introduction. Suppose S is a multiplicative topological semigroup with an

identity contained in an open subset homeomorphic to a Banach space. The

purpose of this paper is to state sufficient conditions under which there exist

inverses and square roots for elements near the identity (see the hypothesis of

Theorem 2). In the finite dimensional case it is known [4] that no additional

conditions are necessary. However, Holmes has shown [2] that this is not true

in the general Banach space setting. Birkhoff [1] has established sufficient

conditions in this case and that result is improved here.

In the spirit of Hilbert's fifth problem2 the assumptions made on the

semigroup do not require differentiability of the semigroup operation. If one

assumes multiplication is continuously differentiable, an application of the

classical implicit function theorem yields inverses for elements in a neighbor-

hood of the identity. The author presents a new implicit function theorem the

proof of which uses a technique of successive approximation analogous to

Newton's method. This theorem along with its counterpart, an inverse func-

tion theorem, is used then to give the desired results in the semigroup.
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It should be noted also that a degree of nonlinearity is introduced in the

assumptions on the semigroup operation. This is seen most graphically when

one compares the hypothesis of Theorem 2 with Birkhoff's definition of an

analytical group nucleus.

2. Implicit function theorem. Let B be a Banach space. If x E B and 6 > 0

denote by N ix; 8) the symmetric open neighborhood about x with radius 8.

Theorem 1. Let each of D and G be an open subset of B, (x0, y0) E D X G,

and P: D X G —» B be a continuous function with F(x0, y0) = 0. Suppose there

exist a one-one function A from a subset of B into B and positive numbers r, M,

and c so that

(i)   ;/ ||x|| < r then x E domL4 _1) and ^A _1(x)|| < M||x||,

(ii)   cM < 1, and

(iii) if x E N(x0; r) and each of yx, y2 E N(y0; r) then (x, y,) E D X G

ii = 1, 2) and

||F(x,y,)- P{x,y2)-Aiyx - y2)\\ < c\\yx - y2\\.

Then there is a connected open subset D' of D containing x0 and a unique

continuous function u: D' —> G such that «(x0) = y0 and F(x, w(x)) = 0 for all

x E D'.

Before proceeding to the proof a Lemma is stated under the hypothesis of

the theorem.

Lemma. There is a positive number 8 < r and a connected open subset D' of

D containing x0 such that (1) ||^4(yi — y2)\\ < r whenever each of yx, y2 E

N (y0; 8), and (2) if x E D' then x E N(x0; r) and the sequence {yk) defined

inductively by

(*) yk=yk-x- A-x[P{x,yk_x)}

converges to a point y E Niy0; 8).

Proof. Suppose the hypothesis of Theorem 1. Let

0 < 8 < min((l - cM)r/2c, r)

such that if x G Nix0; 8) andy G /V(y0; 8) then

||F(x,y)|| =||F(x,y) - P(x0,y0)|| < rcM/2.

Suppose each of yx,y2 E Niy0; 8). Using condition (iii),

HtVi -^2)11 <r(W>) - ^(W2)|| +c\\yx -y2\\< 2^- + 2c5 < r

and (1) is established.

Let 0 < 8' < 5 such that if x G iV(x0; 8') then ||P(x,y0)|| < c(l - cM)5.

Define D' = Nix0; 8'), which is a subset of Nix0; r), and suppose x E D'.

Since ||F(x,y0)|| < r,y, is well defined by (*), and

\\yx -y0||< M||F(x,y0)|| < cM(l - cM)8.

Now suppose n is a positive integer and each of y,, y2, . . . ,yn has been

defined by (*) such that
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\\yk~ yk-i\\<(.cMf(l - cM)8,       k=l,2,...,n.

Then for each k = 1,2, ... ,n,

k k

\\yk - /o|| < 2 H^-X-iIKO -cM)S^(cMY<(cM)d
(=1 1-1

from which it follows that ^(x^^.)!! < rcM/2 < r. Soy„ + 1 is well defined

by (*). Furthermore, noting from (*) that P(x,yn_x) — A(yn_x - yn),

\\yn+x -yn\\< M\\P(x,yn)\\ = M\\P(x,yn_x) - P(x,yn) - A(yn_x - y„)\\

< cM\\yn_x -yn\\<(cM)n+x(l - cM)8.

It is evident that (yk) is a Cauchy sequence and therefore converges to a

pointy. Moreover ||y - y0|| < (cM)8 < 8, and the Lemma is proved.

Proof of Theorem 1. Choose 8 and D' as in the Lemma and define the

function u: D' —» G such that for each x G D', u(x) is the limit of the

sequence defined by (*) with respect to x.

Since P(x0,y0) = 0 and (i) implies that ^(0) = 0, it follows that u(x0) = y0.

Now suppose x G D' and {yk} is the sequence defined by (*) which con-

verges to u(x). Condition (iii) implies A is continuous at the origin, so

P(x,yk) = A(yk - yk+x) -» 0 as k —> oo. Therefore continuity of P gives that

P(x, u(x)) = 0.

To show u is continuous let each of x,, x2 G D'. From the Lemma

u(Xj) G N(y0; 8) for /' = 1, 2; therefore

\\u(xx) - u(x2)\\ =||^-,[^(«(x1) - «(x2))]|| < M\\A(u(xx) - u(x2))\\

< M\\P(x2,u(xx)) - P(x2,u(x2)) - A(u(xx) - u(x2))\\

+ M\\P(xx,u(xx))- P(x2,u(xx))\\

< cM\\u(xx) - u(x2)\\ +M\\P(xx,u(xx)) - F(x2,«(x,))||.

Hence

\\u(xx) - u(x2)\\ < y-^ ||F(x„ «(x,)) - F(x2, «(x,))|| •

By continuity of P, then, u is continuous.

It remains to be shown that u is unique. Suppose v: D' —» G is a continuous

function satisfying u(x0) = y0 and P(x, v(x)) = 0 for all x G D'. Let E

= {x G D': u(x) = v(x)}. Clearly x0 G E and, since each of u and v is

continuous, E is closed relative to D'. E is also open for suppose x G E.

Recalling that \\v(x) - y0|| = ||w(x) - y0|| < S choose 8' > 0 such that z G

A(x; 5') implies.z G D' and ||t;(z) - y0|| < 8. Now if z G A(x; 8') then

\\u(z) - v(z)\\ < M\\A(u(z) - v(z))\\

= M\\P(z, u(z)) - P(z, v(z)) - A(u(z) - v(z))\\

< cM\\u(z) - o(z)||

which implies that u(z) = v(z). Since D' is connected, E = D' and the

theorem is proved.

Corollary. Suppose G is an open subset of B, y0 G G, and f: G -* B is a
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continuous function for which there exist a one-one function A from a subset of

B into B and positive numbers r, M, and c such that

(i)   if ||x|| < r then x E dom(/l _1) and \\A "'(x)|| < M\\x\\,

(ii)   cM < 1, and

(iii)   if each of yx,y2 E A(y0; r) then y, G G (/ = 1, 2) and

\\f(yi)-f{y2)-A{yx -y2)\\ < c\\yx-y2\\.

Then there exists an open subset G' of G containing y0 such that the restriction

of f to G' is a homeomorphism from G' onto an open set containing /(y0).

Proof. Let x0 = /(y0). Define the function P: B X G -> B by F(x, y)

= f(y) ~ x. Clearly P satisfies the hypothesis of Theorem 1. Choose 0 < 8

< r to satisfy (1) of the Lemma and suppose each of y,,y2 E-N(y0; 8). Then

||y, -y2||< M|L4(y,-y2)||

< M||/(y,) -f{y2) - Aiyx - y2)|| + M||/(y,) - /(y2)||

< cM\\yx-y2\\ + M\\fiyx)-fiy2)\\.

Therefore

\\y^-y2\\<Y^\\f(yi)-f(y2)\\-

It follows that/is one-one on N (y0; 8).

Let D be an open set containing x0 and u: D-»Ga continuous function

such that w(x0) = y0 and P(x, w(x)) = 0 for all x E D. Let G' = u[D] n

Niy0; 8). Now / is one-one on G' and, according to the definition of P,

fiuix)) = x for all x G D. Hence the inverse of the restriction of f to G' is u

restricted to/[G'].

To show G' is open suppose y G G' and let m(x) = y. Choose e > 0 such

that if ||x, - x|| < e then x, G D and w(x,) G A(y0; 5). Choose5'> 0 such

that if y, G Niy; 8') then y, G ;V(y0; 5) and ||/(y.) -/(y)|| = ||/(y,) -

x|| < e. Nowify[ G Niy; 8') then each of w(/(y,)) and y, is in Niy0; 8)

with/[w(/(y,))] = fiyx) which implies thaty, = u(/(y,)). Hencey, G G'.
Since each of D and <7' is open and u is continuous, f[G'] is an open set

containing /(y0) and the Corollary is proved.

3. Applications to semigroups. Let S be a multiplicative topological

semigroup with identity e which is locally Banach at e. Let D be an open

subset of 5 containing e and h a homeomorphism from D onto a Banach

space B. Assume hie) = 0. Define the function P such that dom(F) is the set

of all ordered pairs (x, y) G B X B for which /z_1(x) • /i_1(y) G D, and for

each (x, y) G dom(P),

F(x,y) = /z[/z-1(x)-/i-1(y)].

It is a consequence of the definition that dom(F) is open and P is continuous.

Theorem 2. Suppose there exist a one-one function A from a subset of B into

B and positive numbers r, M, and c such that

(i)   if ||x|| < r then x E dom(A "') and \A~x(x)\ < M||x||,

(ii)  cM < 1, and
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(iii)  // each of xx, x2, y,, y2 G A(0; r) then (x„ yf) G dom(P) (/', j = 1, 2),

\\P(xx,yx) - P(xx,y2) - A(yx - y2)\\ < c||y, -y2||,

and

||P(x,,y,) - P(x2,yx) ~A(xx- x2)\\ < c||x, - x2||.

Then there is an open subset D' of D containing e, each member of which has an

inverse and the set of all invertible elements in S is a topological group open in

S.

Proof. Let Q be the function defined on A(0; r) x A(0; r) by

Q(x,y) = P(y, x). Then each of P and Q satisfies the hypothesis of Theorem

1 at the point (0, 0). Therefore let each of U and V be an open subset of

A(0; r) containing 0 and let each of u and v be a continuous function such

that (1) u: U^N(0; r) and v: V^N(0; r), (2) u(0) = v(0) = 0, and

(3) F(x, u(x)) = 0 for all x G U and Q(x, v(x)) = 0 for all x G V. Let

D' = h-\U n V].
Suppose a G D'. Then h(a) G U n V, hence

P(h(a), u[h(a)}) = Q(h(a), v[h(a)]) = 0.

From the definitions of P and Q and the fact that h is one-one it follows that

a-h~x(u[h(a)]) = h~x(v[h(a)]) ■ a = e.

Furthermore,

h-\u[h(a)]) = [h-\v[h(a)]) ■ a] ■ h'x(u[h(a)])

= h-\v[h(a)])-[a-h-x(u[h(a)])] = h~x(v[h(a)]).

Therefore a has an inverse and the inverse operation on D' is h~x(u(h)).

Denote by S(e) the set of all invertible elements in S with the relative

topology. Clearly S(e) is a group with continuous multiplication. Further-

more, if a G S(e) then the set aD' = [a- 8: 8 G D'} is an open subset of

S (e) containing a and the inverse operation on aD' is given by R ~'

= (a-1/?)-1 -a-1 which is continuous since the inverse operation on D' is

continuous. Therefore 5 (e) is a topological group open in S and the theorem

is proved.

Theorem 3. Under the hypothesis of Theorem 2 there is an open subset D' of

D containing e, each member of which has a square root.

Proof. Define the function /: A(0; r)-* B by f(x) = P(x, x). Now /

satisfies the hypothesis of the Corollary to Theorem 1 at the origin with

respect to the one-one function 2A and the positive numbers r, M/2, and 2c.

Conditions (i) and (ii) are verified easily. To show (iii) is satisfied suppose

each of y,,y2 G A(0; r). Then

11/(71) -f(y2) - 2A(yx-y2)\\ <\\P(yx,yx) - P(yx,y2) - A(yx - y2)\\

+ \\P(yvyi) - P(y2,yi) - A(yx-y2)\\

< 2c||>'i -^ill-
Let G be an open subset of A(0; r) containing the origin such that / is
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one-one on G and/[G] is open. Let D' = h~x[f[G]].

Suppose a E D'. Let x E G such that fix) = /.(a); that is, such that

h[h~xix) ■ h~xix)] = hia). Then a = h~'(x) • h~'(x) and the theorem is

proved.
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